Download Free Transportation Energy Management Book in PDF and EPUB Free Download. You can read online Transportation Energy Management and write the review.

Global warming continues to gain importance on the international agenda and calls for action are heightening. Yet, there is still controversy over what must be done and what is needed to proceed. Policy Implications of Greenhouse Warming describes the information necessary to make decisions about global warming resulting from atmospheric releases of radiatively active trace gases. The conclusions and recommendations include some unexpected results. The distinguished authoring committee provides specific advice for U.S. policy and addresses the need for an international response to potential greenhouse warming. It offers a realistic view of gaps in the scientific understanding of greenhouse warming and how much effort and expense might be required to produce definitive answers. The book presents methods for assessing options to reduce emissions of greenhouse gases into the atmosphere, offset emissions, and assist humans and unmanaged systems of plants and animals to adjust to the consequences of global warming.
Transportation, Energy Use and Environmental Impacts shows researchers, students and professionals the important connection between transportation planning, energy use and emissions. The book examines the major transportation activities, components, systems and subsystems by mode. It closely explores the resulting environmental impacts from transport planning, construction and the decommissioning of transportation systems. It discusses transportation planning procedures from an energy use standpoint, offering guidelines to make transportation more energy consumption efficient. Other sections cover propulsion and energy use systems, focusing on road transportation, railway, waterway, pipeline, air, air pollutants, greenhouse gas emissions, and more.
The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles.
Mobility is fundamental to economic and social activities such as commuting, manufacturing, or supplying energy. Each movement has an origin, a potential set of intermediate locations, a destination, and a nature which is linked with geographical attributes. Transport systems composed of infrastructures, modes and terminals are so embedded in the socio-economic life of individuals, institutions and corporations that they are often invisible to the consumer. This is paradoxical as the perceived invisibility of transportation is derived from its efficiency. Understanding how mobility is linked with geography is main the purpose of this book. The third edition of The Geography of Transport Systems has been revised and updated to provide an overview of the spatial aspects of transportation. This text provides greater discussion of security, energy, green logistics, as well as new and updated case studies, a revised content structure, and new figures. Each chapter covers a specific conceptual dimension including networks, modes, terminals, freight transportation, urban transportation and environmental impacts. A final chapter contains core methodologies linked with transport geography such as accessibility, spatial interactions, graph theory and Geographic Information Systems for transportation (GIS-T). This book provides a comprehensive and accessible introduction to the field, with a broad overview of its concepts, methods, and areas of application. The accompanying website for this text contains a useful additional material, including digital maps, PowerPoint slides, databases, and links to further reading and websites. The website can be accessed at: http://people.hofstra.edu/geotrans This text is an essential resource for undergraduates studying transport geography, as well as those interest in economic and urban geography, transport planning and engineering.
Despite the many benefits of energy, most of which are reflected in energy market prices, the production, distribution, and use of energy causes negative effects. Many of these negative effects are not reflected in energy market prices. When market failures like this occur, there may be a case for government interventions in the form of regulations, taxes, fees, tradable permits, or other instruments that will motivate recognition of these external or hidden costs. The Hidden Costs of Energy defines and evaluates key external costs and benefits that are associated with the production, distribution, and use of energy, but are not reflected in market prices. The damage estimates presented are substantial and reflect damages from air pollution associated with electricity generation, motor vehicle transportation, and heat generation. The book also considers other effects not quantified in dollar amounts, such as damages from climate change, effects of some air pollutants such as mercury, and risks to national security. While not a comprehensive guide to policy, this analysis indicates that major initiatives to further reduce other emissions, improve energy efficiency, or shift to a cleaner electricity generating mix could substantially reduce the damages of external effects. A first step in minimizing the adverse consequences of new energy technologies is to better understand these external effects and damages. The Hidden Costs of Energy will therefore be a vital informational tool for government policy makers, scientists, and economists in even the earliest stages of research and development on energy technologies.
This book provides an overview of contemporary trends and challenges in maritime energy management (MEM). Coordinated action is necessary to achieve a low carbon and energy-efficient maritime future, and MEM is the prevailing framework aimed at reducing greenhouse gas emissions resulting from maritime industry activities. The book familiarizes readers with the status quo in the field, and paves the way for finding solutions to perceived challenges. The 34 contributions cover six important aspects: regulatory framework; energy-efficient ship design; energy efficient ship and port operation; economic and social dimensions; alternative fuels and wind-assisted ship propulsion; and marine renewable energy. This pioneering work is intended for researchers and academics as well as practitioners and policymakers involved in this important field.
Energy Efficiency in Air Transportation explores the relationship between air transportation and energy use, starting with an analysis of air transport energy sources and their potential development. The book examines how different elements of the air transport system make use of energy, with an analysis of various methods for optimizing energy consumption. The book covers the consequences of energy use in terms of economics, environmental impact and sustainable development, with a review of the existing and proposed regulatory measures addressing those factors. Aeronautical and air transport engineers interested in aerial vehicle systems design, as well as public administrators and regulators concerned with energy efficiency or environmental issues in air transport, will benefit greatly from this comprehensive reference, which captures necessary background information along with the newest developments in the field. - Examines new developments in energy efficiency in the air transport field - Includes exergy analyses of aerial vehicles and systems - Shows the environmental impact from fuel use including local air quality, consumption of non-renewable materials and contribution to climate change - Discusses the CO2 emissions certification required by ICAO for new aircraft models