Download Free Transport Phenomena In Microgravity Book in PDF and EPUB Free Download. You can read online Transport Phenomena In Microgravity and write the review.

The plans for an international space station, long distance space travel (perhaps to Mars), and the potential for commercial production of ultra pure silicon or polymer crystals are what make these topics of current relevance. The program includes topics such as transport in biological systems (relevant to bone loss associated with long-duration space travel), acoustic levitation, electromagnetic phenomena, crystal growth, protein crystallization, and boiling.
“Micro Transport Phenomena During Boiling” reviews the new achievements and contributions in recent investigations at microscale. The content mainly includes (i) fundamentals for conducting investigations of micro boiling, (ii) microscale boiling and transport phenomena, (iii) boiling characteristics at microscale, (iv) some important applications of micro boiling transport phenomena. This book is intended for researchers and engineers in the field of micro energy systems, electronic cooling, and thermal management in various compact devices/systems at high heat removal and/or heat dissipation. Dr. Xiaofeng Peng, who had passed away on Sep. 10, 2009, was a professor at the Department of Thermal Engineering, Tsinghua University, China.
Fluid flows that transfer heat and mass often involve drops and bubbles, particularly if there are changes of phase in the fluid in the formation or condensation of steam, for example. Such flows pose problems for the chemical and mechanical engineer significantly different from those posed by single-phase flows. This book reviews the current state of the field and will serve as a reference for researchers, engineers, teachers, and students concerned with transport phenomena. It begins with a review of the basics of fluid flow and a discussion of the shapes and sizes of fluid particles and the factors that determine these. The discussion then turns to flows at low Reynolds numbers, including effects due to phase changes or to large radial inertia. Flows at intermediate and high Reynolds numbers are treated from a numerical perspective, with reference to experimental results. The next chapter considers the effects of solid walls on fluid particles, treating both the statics and dynamics of the particle-wall interaction and the effects of phase changes at a solid wall. This is followed by a discussion of the formation and breakup of drops and bubbles, both with and without phase changes. The last two chapters discuss compound drops and bubbles, primarily in three-phase systems, and special topics, such as transport in an electric field.
The frontier represented by the near solar system confronts humanity with intriguing challenges and opportunities. With the inception of the Human Exploration and Development of Space (HEDS) enterprise in 1995, NASA has acknowledged the opportunities and has accepted the very significant challenges. Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies was commissioned by NASA to assist it in coordinating the scientific information relevant to anticipating, identifying, and solving the technical problems that must be addressed throughout the HEDS program over the coming decades. This report assesses scientific and related technological issues facing NASA's Human Exploration and Development of Space endeavor, looking specifically at mission enabling and enhancing technologies which, for development, require an improved understanding of fluid and material behavior in a reduced gravity environment.
Motivated by international competition and an easy access to high-speed computers the manufacturing and materials processing industry has seen many changes in recent times. New techniques are constantly being devloped based on a broad range of basic sciences including physics, chemistry and particularly thermal-fluids sciences and kinetics. In order to produce and treat massive products, the industry is also in need of a very wide range of engineering knowledge and skill for integrating metallurgy, mechanics, electricity, transport phenomena, instrumentation and computer control. This monograph covers a part of these demands, namely by presenting the available knowledge on transport phenomena in manufacturing and materials processing. It is divided into four parts. Part I deals with the fundamentals of transport phenomena, including the transfer of momentum, energy, mass, electric and magnetic properties. Parts II and III are concerned with applications of the fundamentals in transport phenomena occurring in manufacturing and materials processing, respectively. Emphasis has been placed on common aspects of both discciplines, such as forming, machining, welding, casting, injection molding, surface processes, heating and cooling, solidification, crystal growth and diffusion. Part IV deals with beam technology and microgravity, two topics of current importance.
In a microgravity experiment, the conditions prevalent in fluid phases can be substantially different from those on the ground and can be exploited to improve different processes. Fluid physics research in microgravity is important for the advancement of all microgravity scients: life, material, and engineering. Space flight provides a unique laboratory that allows scientists to improve their understanding of the behaviour of fluids in low gravity, allowing the investigation of phenomena and processes normally masked by the effects of gravity and thus difficult to study on Earth. Physics of Fluids in Microgravity provides a clear view of recent research and progress in the different fields of fluid research in space. The topics presented include bubles and drops dynamics, Maragoni flows, diffustion and thermodiffusion, solidfication,a nd crystal growth. The results obtained so far are, in some cases, to be confirmed by extensive research activities on the International Space station, where basic and applied microgravity experimentation will take place in the years to come.
The papers contained in this volume reflect the ingenuity and originality of experimental work in the areas of fluid mechanics, heat transfer and thermodynamics. The contributors are drawn from 27 countries which indicates how well the worldwide scientific community is networked. The papers cover a broad spectrum from the experimental investigation of complex fundamental physical phenomena to the study of practical devices and applications. A uniform outline and method of presentation has been used for each paper.