Download Free Transmission Lines Wave Guides Book in PDF and EPUB Free Download. You can read online Transmission Lines Wave Guides and write the review.

This book covers the principles of operation of electromagnetic waveguides and transmission lines. The approach is divided between mathematical descriptions of basic behaviors and treatment of specific types of waveguide structures. Classical (distributed-network) transmission lines, their basic properties, their connection to lumped-element networks, and the distortion of pulses are discussed followed by a full field analysis of waveguide modes. Modes of specific kinds of waveguides - traditional hollow metallic waveguides, dielectric (including optical) waveguides, etc. are discussed. Problems of excitation and scattering of waveguide modes are addressed, followed by discussion of real systems and performance.
This monograph deals with the theoretical aspects of the circuit modelling of high-frequency electromagnetic structures using the Lorentz reciprocity theorem. This is the first book to cover the generalization from closed structures to open-boundary waveguides and circuit structures. The author has developed a new way to represent a general waveguide by transmission lines: and was awarded the Microwave Prize of the IEEE for this work. The first part of the book discusses the construction of transmission line models for waveguide structures. Then the incidence of external electromagnetic waves on high-frequency structures is studied, and finally the concepts derived in the earlier parts of the book are generalized to reciprocal and non-reciprocal anisotropic, bi-isotropic, and bianisotropic materials.
The book is written for an undergraduate course on the transmission lines and waveguides. It provides comprehensive coverage of four terminal networks, filters, transmission lines and various types of waveguides. The book starts with explaining the symmetrical and asymmetrical four terminal networks which form the basis of filters. Then book provides the detailed discussion of various types of filters. The discussion of composite filters and crystal filter is also included in the book. The book covers the transmission line parameters in detail along with reflection on a line, reflection loss and reflection factor. The chapter on transmission line at radio frequency includes parameters of line at high frequency, standing waves, standing wave ratio, single stub matching, double stub matching and Smith chart. The book covers the various aspects of guided waves between parallel planes. It also provides the discussion of rectangular and circular waveguides. At the end book incorporates the discussion of resonators. Each chapter provides the detailed explanation of the topic, practical examples and variety of solved problems. The explanations are given using very simple and lucid language. All the chapters are arranged in a specific sequence which helps to build the understanding of the subject in a logical fashion. The book explains the philosophy of the subject which makes the understanding of the concepts very clear and makes the subject more interesting.
Provides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial realization and circuit models. Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study Introduction to Modern Planar Transmission Lines is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.
Presents the equivalent-circuit parameters for a large number of microwave structures.
The book introduces concepts on a wide range of materials and has several advantages over existing texts, including: 1. The presentation of a series of scientific postulates and laws of RF and microwaves, which lay the foundation for the behavior of waves and their propagation on transmission lines, is unique to this book compared with similar RF and Microwave texts. 2. The presentation of classical laws and principles of electricity and magnetism, all inter-related, conceptually and graphically. 3. There is a shift of emphasis from rigorous mathematical solutions of Maxwell's equations, and instead has been aptly placed on simple yet fundamental concepts that underlie these equations. This shift of emphasis will promote a deeper understanding of the electronics, particularly at RF/Microwave frequencies. 4. Wave propagation in free space and tramsmission lines has been amply treated from a totally new standpoint. Designing RF/Microwave passive circuits using the Smith Chart as covered in this book becomes a systematic and yet pleasant task, which can easily be duplicated by any practitioner in the field. 5. New technical terms are precisely defined as they are first introduced, thereby keeping the subject matter in focus and preventing misunderstanding, and 6. Finally the abundant use of graphical illustrations and diagrams brings a great deal of clarity and conceptual understanding, enabling difficult concepts to be understood with ease. The fundamentals of RF and microwave electronics can be mastered visually, through many tested practical examples in the book and in the accompanying CD using Microsoft Excel (R) environment. This book is perfect for RF/microwave newcomers or industry veterans! The material is presented lucidly and effectively through worked practical examples using both clear-cut math and vivid illustrations, which help the reader gain practical knowledge in passive circuit design using the Smith Chart.
Transmission Lines and Wave Propagation, Fourth Edition helps readers develop a thorough understanding of transmission line behavior, as well as their advantages and limitations. Developments in research, programs, and concepts since the first edition presented a demand for a version that reflected these advances. Extensively revised, the fourth edition of this bestselling text does just that, offering additional formulas and expanded discussions and references, in addition to a chapter on coupled transmission lines. What Makes This Text So Popular? The first part of the book explores distributed-circuit theory and presents practical applications. Using observable behavior, such as travel time, attenuation, distortion, and reflection from terminations, it analyzes signals and energy traveling on transmission lines at finite velocities. The remainder of the book reviews the principles of electromagnetic field theory, then applies Maxwell's equations for time-varying electromagnetic fields to coaxial and parallel conductor lines, as well as rectangular, circular, and elliptical cylindrical hollow metallic waveguides, and fiber-optic cables. This progressive organization and expanded coverage make this an invaluable reference. With its analysis of coupled lines, it is perfect as a text for undergraduate courses, while graduate students will appreciate it as an excellent source of extensive reference material. This Edition Includes: An overview of fiber optic cables emphasizing the principle types, their propagating modes, and dispersion Discussion of the role of total internal reflection at the core/cladding interface, and the specific application of boundary conditions to a circularly symmetrical propagating mode A chapter on coupled transmission lines, including coupled-line network analysis and basic crosstalk study More information on pulse propagation on lines with skin-effect losses A freeware program available online Solutions manual available with qualifying course adoption