Download Free Transmission Lines And Antennas Book in PDF and EPUB Free Download. You can read online Transmission Lines And Antennas and write the review.

A one-stop reference to the design and analysis of nonplanar microstrip structures. Owing to their conformal capability, nonplanar microstrip antennas and transmission lines have been intensely investigated over the past decade. Yet most of the accumulated research has been too scattered across the literature to be useful to scientists and engineers working on these curved structures. Now, antenna expert Kin-Lu Wong compiles and organizes the latest research results and other cutting-edge developments into an extensive survey of the characteristics of microstrip antennas mounted on canonical nonplanar surfaces. Demonstrating a variety of theoretical techniques and deducing the general characteristics of nonplanar microstrip antennas from calculated results, Wong thoroughly addresses the problems of cylindrical, spherical, and conical structures and gives readers powerful design and optimization tools. Up-to-date topics range from specific applications of spherical and conical microstrip arrays to the curvature effects on the analysis of cylindrical microstrip lines and coplanar waveguides. With 256 illustrations and an exhaustive list of references, Design of Nonplanar Microstrip Antennas and Transmission Lines is an indispensable guide for antenna designers in wireless and personal communications and in radar systems, and an invaluable reference for researchers and students interested in this important technology.
Arrays of cylindrical dipoles and monopoles are usually driven by means of interconnecting transmission lines, whereas analyses of such arrays are generally made in terms of currents or voltages with assigned relative amplitudes and phases at the individual input terminals. Moreover, it is commonly assumed that the distributions of current along all elements are the same and without phase variation. In this report the properties of broadside and endfire arrays are treated with full consideration of interconnecting transmission lines and the effect of mutual coupling on the distributions of current. Driving-point admittances and field patterns of arrays of half-wave and full-wave elements are given. A novel broadside-endfire array is described. (Author).
This book gives a step-by-step presentation of a generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. Normally, a radiation problem requires a full wave analysis which may be time consuming. The beauty of the generalized transmission line method is that it transforms the radiation problem for a specific type of structure, say the multilayer structure excited by an antenna, into a circuit problem that can be efficiently analyzed. Using the Reciprocity Theorem and far-field approximation, the method computes the far-zone radiation due to a Hertzian dipole within a multilayer structure by solving an equivalent transmission line circuit. Since an antenna can be modeled as a set of Hertzian dipoles, the method could be used to predict the far-zone radiation of an antenna under a multilayer structure. The analytical expression for the far-zone field is derived for a structure with or without a polarizer. The procedure of obtaining the Hertzian dipole model that is required by the generalized transmission line method is also described. Several examples are given to demonstrate the capabilities, accuracy, and efficiency of this method. Table of Contents: Antennas Under a Multilayer Dielectric Slab / Antennas Under a Polarized Multilayer Structure / Hertzian Dipole Model for an Antenna / Bibliography / Biography
Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propagation, and antenna analysis and design Discusses industrial standard design software tools, and antenna measurement equipment, facilities and techniques Covers electrically small antennas, mobile antennas, UWB antennas and new materials for antennas Also discusses reconfigurable antennas, RFID antennas, Wide-band and multi-band antennas, radar antennas, and MIMO antennas Design examples of various antennas are provided Written in a practical and concise manner by authors who are experts in antenna design, with experience from both academia and industry This book will be an invaluable resource for engineers and designers working in RF engineering, radar and radio communications, seeking a comprehensive and practical introduction to the basics of antenna design. The book can also be used as a textbook for advanced students entering a profession in this field.
This thesis proposes a reliable and repeatable method for implementing Spoof Surface Plasmon (SSP) modes in the design of various circuit components. It also presents the first equivalent circuit model for plasmonic structures, which serves as an insightful guide to designing SSP-based circuits. Today, electronic circuits and systems are developing rapidly and becoming an indispensable part of our daily life; however the issue of compactness in integrated circuits remains a formidable challenge. Recently, the Spoof Surface Plasmon (SSP) modes have been proposed as a novel platform for highly compact electronic circuits. Despite extensive research efforts in this area, there is still an urgent need for a systematic design method for plasmonic circuits. In this thesis, different SSP-based transmission lines, antenna feeding networks and antennas are designed and experimentally evaluated. With their high field confinement, the SSPs do not suffer from the compactness limitations of traditional circuits and are capable of providing an alternative platform for the future generation of electronic circuits and electromagnetic systems.