Download Free Transition Metal Complexes With Quinone Functionalized Ligands As Multi Electron Proton Redox Catalysts Book in PDF and EPUB Free Download. You can read online Transition Metal Complexes With Quinone Functionalized Ligands As Multi Electron Proton Redox Catalysts and write the review.

Filling the gap in the market for comprehensive coverage of this hot topic, this timely book covers a wide range of organic transformations, e. g. reductions of unsaturated compounds, oxidation reactions, Friedel-Crafts reactions, hydroamination reactions, depolymerizations, transformations of carbon dioxide, oxidative coupling reactions, as well as C-C, C-N, and C-O bond formation reactions. A chapter on the application of zinc catalysts in total synthesis is also included. With its aim of stimulating further research and discussion in the field, this is a valuable reference for professionals in academia and industry wishing to learn about the latest developments.
It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such as DFT, ligand-field theory and coupled cluster theory are discussed, and these methods are applied in studies throughout the book. Important spectroscopic techniques to determine spin states in transition metal complexes and proteins are explained, and the use of NMR for the analysis of spin densities is described. Topics covered include: DFT and ab initio wavefunction approaches to spin states Experimental techniques for determining spin states Molecular discovery in spin crossover Multiple spin state scenarios in organometallic reactivity and gas phase reactions Transition-metal complexes involving redox non-innocent ligands Polynuclear iron sulfur clusters Molecular magnetism NMR analysis of spin densities This book is a valuable reference for researchers working in bioinorganic and inorganic chemistry, computational chemistry, organometallic chemistry, catalysis, spin-crossover materials, materials science, biophysics and pharmaceutical chemistry.
Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.
This book is devoted to the interaction between elemental metals and (in)organic ligands in different reaction conditions. Metals could be activated for further reactions as cryosynthesis, electrosynthesis and tribosynthesis, some of them with or without ultrasonic and microwave treatment. The kinetics of metal dissolution in various non-aqueous media is discussed in detail.Many methods are used nowadays to synthesize coordination compounds. Metal complexes are obtained mainly by the direct interaction of the components (the ligands and a source of the complex-forming metal), as a result of ligand and metal exchange, and under the conditions of template synthesis, which also include the method of nascent reagents. In these methods the source of the metal is either its salts or carbonyls. At the same time, it has long been known that coordination compounds may be obtained as a result of direct synthesis from zero-valent metals. Methods for the synthesis of complex compounds under the conditions of gas-phase reactions, oxidative dissolution of zero-valent metals in non-aqueous media, and in the solid phase have been developed. These methods have become the basis of a new field in synthetic chemistry - the direct synthesis of coordination and organometallic compounds from zero-valent metals.Particular aspects of the above problem have been described in a series of reviews and monographs. However, on the whole these main parts of the direct synthesis of metal complexes has not been dealt with in the review and monograph publications on coordination chemistry. So, the main objective of this book is to analyze, discuss and generalize the existing information in the area of direct reactions leading to the coordination and organometallic reactions.Some methods of direct synthesis have been developed in the former USSR (in particular, a lot of works on cryosynthesis, pioneered (1972-1973) and recent works on electrosynthesis) but, in spite of their novelty and/or wide applicability, they are practically unknown elsewhere due to the language barrier. Thus, another objective of this book is to acquaint the readers with the mentioned achievements.Every chapter contains the tables which describe all the reported data on direct reaction between metal atoms, metal particles or bulk metals with (in)organic ligans. There are some illustrations also (for example, the scheme of the reactor for gas-phase reaction between metal small particles and &bgr;-diketones).
30% discount for members of The Mineralogical Society of Britain and Ireland This text summarises the state-of-the-art in the study of mineral surfaces and some of the key applications of surface science in mineralogy and mineral chemistry. Each chapter covers a particular aspect of the subject and is written by an expert who raises the key issues involved for those requiring an introduction to the subject, whilst highlighting most recent developments. Advanced undergraduates, postgraduates and researchers alike will find this essential reading as it is the first book to review the fast developing field of mineral surfaces.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
This book presents critical reviews of the current position and future trends in modern chemical research. It offers short and concise reports on chemistry, each written by world renowned experts.
The only comprehensive one-volume text/reference on metal-ligand multiple bonds. Stresses the unified nature of the field and includes handy new tabulations of data. The flow within each subtopic is oxygen to nitrogen to carbon. Coverage is up-to-date--virtually every subtopic leads to interesting questions for future research. Presents information otherwise scattered through hundreds of publications.
Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important