Download Free Transcriptional Corepressors Mediators Of Eukaryotic Gene Repression Book in PDF and EPUB Free Download. You can read online Transcriptional Corepressors Mediators Of Eukaryotic Gene Repression and write the review.

Corepressors are newly discovered assemblies of proteins that play essential roles in eukaryotic gene regulation. Recent discoveries about corepressors have provided new insights into the molecular basis of gene regulation, and have established surprising connections between the mechanisms of action of a wide variety of transcriptional regulators. The reviews in this volume critically discuss the nature, mechanisms of action, and physiological roles of corepressors in a diverse assortment of biological systems. Both basic and clinical investigators will be able to find relevant information. The comprehensive nature of the compilation, and the breadth of the reviews, are intended to provide the reader with an excellent introduction to the newly emergent and rapidly-growing field of corepressor research. A valuable and detailed reference guide.
This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. This pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation. The purpose of this book is to provide, in a condensed form, an overview on the present understanding of the mechanisms of gene regulation. The authors are not aiming to compete with comprehensive treatises, but rather focus on the essentials. Therefore, the authors have favored a high figure-to-text ratio following the rule stating that “a picture tells more than thousand words”. The content of the book is based on the lecture course, which is given by Prof. Carlberg since 2001 at the University of Eastern Finland in Kuopio. The book is subdivided into 4 sections and 13 chapters. Following the Introduction there are three sections, which take a view on gene regulation from the perspective of transcription factors, chromatin and non-coding RNA, respectively. Besides its value as a textbook, Mechanisms of Gene Regulation will be a useful reference for individuals working in biomedical laboratories.
Mycology, the study of fungi, originated as a subdiscipline of botany and was a descriptive discipline, largely neglected as an experimental science until the early years of this century. A seminal paper by Blakeslee in 1904 provided evidence for self incompatibility, termed "heterothallism", and stimulated interest in studies related to the control of sexual reproduction in fungi by mating-type specificities. Soon to follow was the demonstration that sexually reproducing fungi exhibit Mendelian inheritance and that it was possible to conduct formal genetic analysis with fungi. The names Burgeff, Kniep and Lindegren are all associated with this early period of fungal genetics research. These studies and the discovery of penicillin by Fleming, who shared a Nobel Prize in 1945, provided further impetus for experimental research with fungi. Thus began a period of interest in mutation induction and analysis of mutants for bio chemical traits. Such fundamental research, conducted largely with Neurospora crassa, led to the one gene: one enzyme hypothesis and to a second Nobel Prize for fungal research awarded to Beadle and Tatum in 1958. Fundamental research in biochemical genetics was extended to other fungi, especially to Saccharomyces cere visiae, and by the mid-1960s fungal systems were much favored for studies in eukaryotic molecular biology and were soon able to compete with bacterial systems in the molecular arena.
This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease
Presents a coherent account of many productive lines of investigation, organized as a series of mini-reviews that focus on major research areas including studies on the structure and mechanisms of action of bacterial, viral, and eukaryotic RNA polymerases, and the transcription factors that control their activities. Each review provides a brief but up-to-date account of the progress of research in a particular area, a discussion of the major issues and questions driving that research, and a brief description of the evolving approaches and technologies used to address those questions. Annotation copyright by Book News, Inc., Portland, OR
A much-needed guide through the overwhelming amount of literature in the field. Comprehensive and detailed, this book combines background information with the most recentinsights. It introduces current concepts, emphasizing the transcriptional control of genetic information. Moreover, it links data on the structure of regulatory proteins with basic cellular processes. Both advanced students and experts will find answers to such intriguing questions as: - How are programs of specific gene repertoires activated and controlled? - Which genes drive and control morphogenesis? - Which genes govern tissue-specific tasks? - How do hormones control gene expression in coordinating the activities of different tissues? An abundant number of clearly presented glossary terms facilitates understanding of the biological background. Speacial feature: over 2200 (!) literature references.
Epigenetics and Regeneration compiles the first foundational reference on epigenetic mechanisms governing tissue development, repair, homeostasis, and regeneration, as well as pathways to employ these mechanisms in clinical practice and translational science. In this book, life science researchers, clinicians, and students will discover an interdisciplinary resource bringing together common themes in the field, background overviews, research methods, recent advances, and opportunities for drug discovery. Throughout this volume, special attention is paid to pre-clinical and first clinical studies aimed at increasing the regenerative potential of damaged tissues by epigenetic drugs, as well as innovative, discipline spanning strategies to enhance cell reprogramming. As an all-inclusive, evidence-based volume, Epigenetics and Regeneration will stimulate discussion and boost new research in this fascinating and impactful area of translational epigenetics. Provides a foundational overview of epigenetics in regenerative medicine Examines epigenetic components of tissue regeneration for a variety of organ systems and tissue types, as well as current attempts to employ these mechanisms in clinical practice Offers researchers, students, clinicians, and pharmacologists the tools they need to enhance tissue development, repair, homeostasis, and regeneration and explore new epigenetic therapeutic pathways Features chapter contributions from leading international researchers and clinicians in the fields of epigenetics and regenerative medicine