Download Free Trajectory Optimization And Guidance For An Advanced Launch System Book in PDF and EPUB Free Download. You can read online Trajectory Optimization And Guidance For An Advanced Launch System and write the review.

This book focuses on the design and application of advanced trajectory optimization and guidance and control (G&C) techniques for aerospace vehicles. Part I of the book focuses on the introduction of constrained aerospace vehicle trajectory optimization problems, with particular emphasis on the design of high-fidelity trajectory optimization methods, heuristic optimization-based strategies, and fast convexification-based algorithms. In Part II, various optimization theory/artificial intelligence (AI)-based methods are constructed and presented, including dynamic programming-based methods, model predictive control-based methods, and deep neural network-based algorithms. Key aspects of the application of these approaches, such as their main advantages and inherent challenges, are detailed and discussed. Some practical implementation considerations are then summarized, together with a number of future research topics. The comprehensive and systematic treatment of practical issues in aerospace trajectory optimization and guidance and control problems is one of the main features of the book, which is particularly suitable for readers interested in learning practical solutions in aerospace trajectory optimization and guidance and control. The book is useful to researchers, engineers, and graduate students in the fields of G&C systems, engineering optimization, applied optimal control theory, etc.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
This is a long-overdue volume dedicated to space trajectory optimization. Interest in the subject has grown, as space missions of increasing levels of sophistication, complexity, and scientific return - hardly imaginable in the 1960s - have been designed and flown. Although the basic tools of optimization theory remain an accepted canon, there has been a revolution in the manner in which they are applied and in the development of numerical optimization. This volume purposely includes a variety of both analytical and numerical approaches to trajectory optimization. The choice of authors has been guided by the editor's intention to assemble the most expert and active researchers in the various specialities presented. The authors were given considerable freedom to choose their subjects, and although this may yield a somewhat eclectic volume, it also yields chapters written with palpable enthusiasm and relevance to contemporary problems.
This book presents advanced case studies that address a range of important issues arising in space engineering. An overview of challenging operational scenarios is presented, with an in-depth exposition of related mathematical modeling, algorithmic and numerical solution aspects. The model development and optimization approaches discussed in the book can be extended also towards other application areas. The topics discussed illustrate current research trends and challenges in space engineering as summarized by the following list: • Next Generation Gravity Missions • Continuous-Thrust Trajectories by Evolutionary Neurocontrol • Nonparametric Importance Sampling for Launcher Stage Fallout • Dynamic System Control Dispatch • Optimal Launch Date of Interplanetary Missions • Optimal Topological Design • Evidence-Based Robust Optimization • Interplanetary Trajectory Design by Machine Learning • Real-Time Optimal Control • Optimal Finite Thrust Orbital Transfers • Planning and Scheduling of Multiple Satellite Missions • Trajectory Performance Analysis • Ascent Trajectory and Guidance Optimization • Small Satellite Attitude Determination and Control • Optimized Packings in Space Engineering • Time-Optimal Transfers of All-Electric GEO Satellites Researchers working on space engineering applications will find this work a valuable, practical source of information. Academics, graduate and post-graduate students working in aerospace, engineering, applied mathematics, operations research, and optimal control will find useful information regarding model development and solution techniques, in conjunction with real-world applications.
This volume consists of 14 contributed chapters written by leading experts, offering in-depth discussions of the mathematical modeling and algorithmic aspects for tackling a range of space engineering applications. This book will be of interest to researchers and practitioners working in the field of space engineering. Since it offers an in-depth exposition of the mathematical modelling, algorithmic and numerical solution aspects of the topics covered, the book will also be useful to aerospace engineering graduates and post-graduate students who wish to expand their knowledge by studying real-world applications and challenges that they will encounter in their profession. Readers will obtain a broad overview of some of the most challenging space engineering operational scenarios of today and tomorrow: this will be useful for managers in the aerospace field, as well as in other industrial sectors. The contributed chapters are mainly focused on space engineering practice. Researchers and practitioners in mathematical systems modelling, operations research, optimization, and optimal control will also benefit from the case studies presented in this book. The model development and optimization approaches discussed can be extended towards other application areas that are not directly related to space engineering. Therefore, the book can be a useful reference to assist in the development of new modelling and optimization applications.