Download Free Trade Off Analytics Book in PDF and EPUB Free Download. You can read online Trade Off Analytics and write the review.

Presents information to create a trade-off analysis framework for use in government and commercial acquisition environments This book presents a decision management process based on decision theory and cost analysis best practices aligned with the ISO/IEC 15288, the Systems Engineering Handbook, and the Systems Engineering Body of Knowledge. It provides a sound trade-off analysis framework to generate the tradespace and evaluate value and risk to support system decision-making throughout the life cycle. Trade-off analysis and risk analysis techniques are examined. The authors present an integrated value trade-off and risk analysis framework based on decision theory. These trade-off analysis concepts are illustrated in the different life cycle stages using multiple examples from defense and commercial domains. Provides techniques to identify and structure stakeholder objectives and creative, doable alternatives Presents the advantages and disadvantages of tradespace creation and exploration techniques for trade-off analysis of concepts, architectures, design, operations, and retirement Covers the sources of uncertainty in the system life cycle and examines how to identify, assess, and model uncertainty using probability Illustrates how to perform a trade-off analysis using the INCOSE Decision Management Process using both deterministic and probabilistic techniques Trade-off Analytics: Creating and Exploring the System Tradespace is written for upper undergraduate students and graduate students studying systems design, systems engineering, industrial engineering and engineering management. This book also serves as a resource for practicing systems designers, systems engineers, project managers, and engineering managers. Gregory S. Parnell, PhD, is a Research Professor in the Department of Industrial Engineering at the University of Arkansas. He is also a senior principal with Innovative Decisions, Inc., a decision and risk analysis firm and has served as Chairman of the Board. Dr. Parnell has published more than 100 papers and book chapters and was lead editor of Decision Making for Systems Engineering and Management, Wiley Series in Systems Engineering (2nd Ed, Wiley 2011) and lead author of the Handbook of Decision Analysis (Wiley 2013). He is a fellow of INFORMS, the INCOSE, MORS, and the Society for Decision Professionals.
Presents information to create a trade-off analysis framework for use in government and commercial acquisition environments This book presents a decision management process based on decision theory and cost analysis best practices aligned with the ISO/IEC 15288, the Systems Engineering Handbook, and the Systems Engineering Body of Knowledge. It provides a sound trade-off analysis framework to generate the tradespace and evaluate value and risk to support system decision-making throughout the life cycle. Trade-off analysis and risk analysis techniques are examined. The authors present an integrated value trade-off and risk analysis framework based on decision theory. These trade-off analysis concepts are illustrated in the different life cycle stages using multiple examples from defense and commercial domains. Provides techniques to identify and structure stakeholder objectives and creative, doable alternatives Presents the advantages and disadvantages of tradespace creation and exploration techniques for trade-off analysis of concepts, architectures, design, operations, and retirement Covers the sources of uncertainty in the system life cycle and examines how to identify, assess, and model uncertainty using probability Illustrates how to perform a trade-off analysis using the INCOSE Decision Management Process using both deterministic and probabilistic techniques Trade-off Analytics: Creating and Exploring the System Tradespace is written for upper undergraduate students and graduate students studying systems design, systems engineering, industrial engineering and engineering management. This book also serves as a resource for practicing systems designers, systems engineers, project managers, and engineering managers. Gregory S. Parnell, PhD, is a Research Professor in the Department of Industrial Engineering at the University of Arkansas. He is also a senior principal with Innovative Decisions, Inc., a decision and risk analysis firm and has served as Chairman of the Board. Dr. Parnell has published more than 100 papers and book chapters and was lead editor of Decision Making for Systems Engineering and Management, Wiley Series in Systems Engineering (2nd Ed, Wiley 2011) and lead author of the Handbook of Decision Analysis (Wiley 2013). He is a fellow of INFORMS, the INCOSE, MORS, and the Society for Decision Professionals.
This study assesses the potential of new technology to reduce logistics support requirements for future Army combat systems. It describes and recommends areas of research and technology development in which the Army should invest now to field systems that will reduce logistics burdens and provide desired capabilities for an "Army After Next (AAN) battle force" in 2025.
Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.
Health inequalities blight lives, generate enormous costs, and exist everywhere. This book is the definitive all-in-one guide for anyone who wishes to learn about, commission, and use distributional cost-effectiveness analysis to promote both equity and efficiency in health and healthcare.
Presents information to create a trade-off analysis framework for use in government and commercial acquisition environments This book presents a decision management process based on decision theory and cost analysis best practices aligned with the ISO/IEC 15288, the Systems Engineering Handbook, and the Systems Engineering Body of Knowledge. It provides a sound trade-off analysis framework to generate the tradespace and evaluate value and risk to support system decision-making throughout the life cycle. Trade-off analysis and risk analysis techniques are examined. The authors present an integrated value trade-off and risk analysis framework based on decision theory. These trade-off analysis concepts are illustrated in the different life cycle stages using multiple examples from defense and commercial domains. Provides techniques to identify and structure stakeholder objectives and creative, doable alternatives Presents the advantages and disadvantages of tradespace creation and exploration techniques for trade-off analysis of concepts, architectures, design, operations, and retirement Covers the sources of uncertainty in the system life cycle and examines how to identify, assess, and model uncertainty using probability Illustrates how to perform a trade-off analysis using the INCOSE Decision Management Process using both deterministic and probabilistic techniques Trade-off Analytics: Creating and Exploring the System Tradespace is written for upper undergraduate students and graduate students studying systems design, systems engineering, industrial engineering and engineering management. This book also serves as a resource for practicing systems designers, systems engineers, project managers, and engineering managers. Gregory S. Parnell, PhD, is a Research Professor in the Department of Industrial Engineering at the University of Arkansas. He is also a senior principal with Innovative Decisions, Inc., a decision and risk analysis firm and has served as Chairman of the Board. Dr. Parnell has published more than 100 papers and book chapters and was lead editor of Decision Making for Systems Engineering and Management, Wiley Series in Systems Engineering (2nd Ed, Wiley 2011) and lead author of the Handbook of Decision Analysis (Wiley 2013). He is a fellow of INFORMS, the INCOSE, MORS, and the Society for Decision Professionals.
Offers a one-stop reference on the application of advanced modeling and simulation (M&S) in cyber physical systems (CPS) engineering This book provides the state-of-the-art in methods and technologies that aim to elaborate on the modeling and simulation support to cyber physical systems (CPS) engineering across many sectors such as healthcare, smart grid, or smart home. It presents a compilation of simulation-based methods, technologies, and approaches that encourage the reader to incorporate simulation technologies in their CPS engineering endeavors, supporting management of complexity challenges in such endeavors. Complexity Challenges in Cyber Physical Systems: Using Modeling and Simulation (M&S) to Support Intelligence, Adaptation and Autonomy is laid out in four sections. The first section provides an overview of complexities associated with the application of M&S to CPS Engineering. It discusses M&S in the context of autonomous systems involvement within the North Atlantic Treaty Organization (NATO). The second section provides a more detailed description of the challenges in applying modeling to the operation, risk and design of holistic CPS. The third section delves in details of simulation support to CPS engineering followed by the engineering practices to incorporate the cyber element to build resilient CPS sociotechnical systems. Finally, the fourth section presents a research agenda for handling complexity in application of M&S for CPS engineering. In addition, this text: Introduces a unifying framework for hierarchical co-simulations of cyber physical systems (CPS) Provides understanding of the cycle of macro-level behavior dynamically arising from spaciotemporal interactions between parts at the micro-level Describes a simulation platform for characterizing resilience of CPS Complexity Challenges in Cyber Physical Systems has been written for researchers, practitioners, lecturers, and graduate students in computer engineering who want to learn all about M&S support to addressing complexity in CPS and its applications in today’s and tomorrow’s world.
Optimize the decisions that define your code by exploring the common mistakes and intentional tradeoffs made by expert developers. In Software Mistakes and Tradeoffs you will learn how to: Reason about your systems to make intuitive and better design decisions Understand consequences and how to balance tradeoffs Pick the right library for your problem Thoroughly analyze all of your service’s dependencies Understand delivery semantics and how they influence distributed architecture Design and execute performance tests to detect code hot paths and validate a system’s SLA Detect and optimize hot paths in your code to focus optimization efforts on root causes Decide on a suitable data model for date/time handling to avoid common (but subtle) mistakes Reason about compatibility and versioning to prevent unexpected problems for API clients Understand tight/loose coupling and how it influences coordination of work between teams Clarify requirements until they are precise, easily implemented, and easily tested Optimize your APIs for friendly user experience Code performance versus simplicity. Delivery speed versus duplication. Flexibility versus maintainability—every decision you make in software engineering involves balancing tradeoffs. In Software Mistakes and Tradeoffs you’ll learn from costly mistakes that Tomasz Lelek and Jon Skeet have encountered over their impressive careers. You’ll explore real-world scenarios where poor understanding of tradeoffs lead to major problems down the road, so you can pre-empt your own mistakes with a more thoughtful approach to decision making. Learn how code duplication impacts the coupling and evolution speed of your systems, and how simple-sounding requirements can have hidden nuances with respect to date and time information. Discover how to efficiently narrow your optimization scope according to 80/20 Pareto principles, and ensure consistency in your distributed systems. You’ll soon have built up the kind of knowledge base that only comes from years of experience. About the technology Every step in a software project involves making tradeoffs. When you’re balancing speed, security, cost, delivery time, features, and more, reasonable design choices may prove problematic in production. The expert insights and relatable war stories in this book will help you make good choices as you design and build applications. About the book Software Mistakes and Tradeoffs explores real-world scenarios where the wrong tradeoff decisions were made and illuminates what could have been done differently. In it, authors Tomasz Lelek and Jon Skeet share wisdom based on decades of software engineering experience, including some delightfully instructive mistakes. You’ll appreciate the specific tips and practical techniques that accompany each example, along with evergreen patterns that will change the way you approach your next projects. What's inside How to reason about your software systematically How to pick tools, libraries, and frameworks How tight and loose coupling affect team coordination Requirements that are precise, easy to implement, and easy to test About the reader For mid- and senior-level developers and architects who make decisions about software design and implementation. About the author Tomasz Lelek works daily with a wide range of production services, architectures, and JVM languages. A Google engineer and author of C# in Depth, Jon Skeet is famous for his many practical contributions to Stack Overflow.
As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical.
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a