Download Free Towards Multi Colour Strategies For The Detection Of Nucleic Acid Hybridization Using Quantum Dots As Energy Donors In Fluorescence Resonance Energy Transfer Fret Book in PDF and EPUB Free Download. You can read online Towards Multi Colour Strategies For The Detection Of Nucleic Acid Hybridization Using Quantum Dots As Energy Donors In Fluorescence Resonance Energy Transfer Fret and write the review.

The unique optical properties of quantum dots (QDs) are of interest in the development of nucleic acid diagnostics. The potential for a simultaneous two-colour diagnostic scheme for nucleic acids operating on the basis of fluorescence resonance energy transfer (FRET) has been demonstrated. Upon ultraviolet excitation, two-colours of CdSe/ZnS quantum dots with conjugated oligonucleotide probes acted as energy donors yielding FRET-sensitized acceptor emission upon hybridization with fluorophore labeled target oligonucleotides. The use of an intercalating dye to improve signal-to-noise was also demonstrated. The major limitation of the system was the non-specific adsorption of oligonucleotides, which was characterized extensively. Adsorptive interactions were found to affect the conformation of oligonucleotides conjugated to QDs, the kinetics of hybridization with QD-DNA conjugates, and the thermal stability of those hybrids. In addition, it was found that thiol-alkyl-acid capped QDs exhibited pKa correlated ligand-chromism and radiative decay rate-driven changes in quantum yield.
This book provides a comprehensive review of established, cutting-edge, and future trends in the exponentially growing field of nanomaterials and their applications in biosensors and bioanalyses. Part I focuses on the key principles and transduction approaches, reviewing the timeline featuring the important historical milestones in the development and application of nanomaterials in biosensors and bioanalyses. Part II reviews various architectures used in nanobiosensing designs focusing on nanowires, one- and two-dimensional nanostructures, and plasmonic nanobiosensors with interferometric reflectance imaging. Commonly used nanomaterials, functionalization of the nanomaterials, and development of nanobioelectronics are discussed in detail in Part III with examples from screen-printed electrodes, nanocarbon films, and semiconductor quantum dots. Part IV reviews the current applications of carbon nanotubes, nanoneedles, plasmonic sensors, electrochemical scanning microscopes, and field-effect transistors with the future outlook for emerging technologies. Attention is also given to potential challenges, in particular, of taking these technologies at the point-of-need. The book concludes by providing a condensed summary of the contents, with emphasis on future directions. Nanomaterials have become an essential part of biosensors and bioanalyses in the detection and monitoring of medical, pharmaceutical, and environmental conditions, from cancer to chemical warfare agents. This book, with its distinguished editors and international team of expert contributors, will be an essential guide for all those involved in the research, design, development, and application of nanomaterials in biosensors and bioanalyses.
The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 8 - Nanocomposites
Consisting of six chapters, written by experts in their field, this book charts the progress made in the use of quantum dots as the signaling component in optical sensors since their discovery in the early 1980s. In particular, it focuses on CdS-, CdSe-, and CdTe-type QDs due to their emission in the visible region of the electromagnetic spectrum. The book begins by detailing the range of methods currently used for the preparation and passivation of core/core–shell quantum dots and follows with a discussion on their electrochemical properties and potential toxicity. The book culminates by focusing on how electron and energy transfer mechanisms can be utilized to generate a range of quantum dot-based probes. This is the first text of its kind dedicated to quantum dot-based sensors and will appeal to those readers who have an interest in working with these versatile nanoparticles.
Colloids for Nanobiotechnology: Synthesis, Characterization and Potential Applications, Volume 17, offers a range of perspectives on emerging nano-inspired colloidal applications. With an emphasis on biomedical and environmental opportunities and challenges, the book outlines how nanotechnology is being used to increase the uses and impact of colloid science. Nanotechnology offers new horizons for colloidal research and synthesis routes that allow for the production of highly reproducible and defined materials. This book presents new characterization methods and a fundamental understanding of basic physicochemical, physical and chemical properties. Explores the use of nanotechnology in enhancing colloidal characterization techniques Explains how colloids are being used in a range of nanomedical applications Demonstrates how nanotechnology is being used to create more efficient colloidal synthesis techniques
In the last two decades, semiconductor quantum dots-small colloidal nanoparticles-have garnered a great deal of scientific interest because of their unique properties. Among nanomaterials, CdTe holds special technological importance as the only known II-VI material that can form conventional p-n junctions. This makes CdTe very important for the dev
This book offers an overview of state-of-the-art in non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specific detection tools. Advanced materials play multiple roles in ultrasensitive detection. Optical and electrochemical detection tools are among the most widely investigated to analyze non amplified nucleic acids. Biosensors based on piezoelectric crystal have been also used to detect unamplified genomic DNA. The main scientific topics related to DNA diagnostics are discussed by an outstanding set of authors with proven experience in this field.
This volume provides a comprehensive, state-of-the art review of the field of cell therapy. The volume begins with an overview of the breadth of the field and then turns to overviews of imaging technologies that can aid in both safety and efficacy evaluations. The book then turns to numerous contributions detailing the rapidly growing field of stem cell therapies. These sections cover our understanding of the natural roles of stem cells in biology and human disease and then touches on several of the more prominent areas where stem cells are moving rapidly into clinical evaluation including neurodegenerative diseases, muscular dystrophy, cardiac repair, and diabetes. The volume concludes with contributions from experts in oncology, ophthalmology, stem cells, 3-D printing, and biomaterials where the convergence of expertise is leading to unprecedented insights into how to minutely control the in vivo fate and function of transplanted and/or endogeneously mobilized cells. Finally, the book provides insights into the pivotal relationship between academic and industrial partnerships. This volume is designed to touch on the major areas where the field will make its greatest and most immediate clinical impacts. This text will provide a useful resource for physicians and researchers interested in the rapidly changing filed of cell therapy.
This handbook explains the application of nanoparticles in medical diagnosis and treatment. It is a ready reference on the subject, starting with the introduction to nanoparticles and progressing to synthetic procedures for nanotherapeutics, human disease diagnosis and nanocarrier-based drug delivery. The book also covers information about specific nanoparticle conjugates, in which nanoparticles are combined with drugs or nucleic acid strands (DNA, siRNAs, shRNAs, miRNAs) as well as topics of relevant to this field such as immunotherapy and vaccination development strategies. Each chapter also provides references for further reading. A Comprehensive Guide to Nanoparticles in Medicine is an ideal resource for scholars in medicine, pharmacology and technology who require an understanding to some basic facets of nanoparticles.