Download Free Towards Efficient Inference And Improved Training Efficiency Of Deep Neural Networks Book in PDF and EPUB Free Download. You can read online Towards Efficient Inference And Improved Training Efficiency Of Deep Neural Networks and write the review.

This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.
How to Build a Brain provides a detailed exploration of a new cognitive architecture - the Semantic Pointer Architecture - that takes biological detail seriously, while addressing cognitive phenomena. Topics ranging from semantics and syntax, to neural coding and spike-timing-dependent plasticity are integrated to develop the world's largest functional brain model.
Today, billions of devices are Internet-connected, IoT standards and protocols are stabilizing, and technical professionals must increasingly solve real problems with IoT technologies. Now, five leading Cisco IoT experts present the first comprehensive, practical reference for making IoT work. IoT Fundamentals brings together knowledge previously available only in white papers, standards documents, and other hard-to-find sources—or nowhere at all. The authors begin with a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions. Next, they walk through each key technology, protocol, and technical building block that combine into complete IoT solutions. Building on these essentials, they present several detailed use cases, including manufacturing, energy, utilities, smart+connected cities, transportation, mining, and public safety. Whatever your role or existing infrastructure, you’ll gain deep insight what IoT applications can do, and what it takes to deliver them. Fully covers the principles and components of next-generation wireless networks built with Cisco IOT solutions such as IEEE 802.11 (Wi-Fi), IEEE 802.15.4-2015 (Mesh), and LoRaWAN Brings together real-world tips, insights, and best practices for designing and implementing next-generation wireless networks Presents start-to-finish configuration examples for common deployment scenarios Reflects the extensive first-hand experience of Cisco experts
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
This is the first book to connect the concepts of active learning and deep learning, and to delineate theory and practice through collaboration between scholars in higher education from three countries (Japan, the United States, and Sweden) as well as different subject areas (education, psychology, learning science, teacher training, dentistry, and business).It is only since the beginning of the twenty-first century that active learning has become key to the shift from teaching to learning in Japanese higher education. However, “active learning” in Japan, as in many other countries, is just an umbrella term for teaching methods that promote students’ active participation, such as group work, discussions, presentations, and so on.What is needed for students is not just active learning but deep active learning. Deep learning focuses on content and quality of learning whereas active learning, especially in Japan, focuses on methods of learning. Deep active learning is placed at the intersection of active learning and deep learning, referring to learning that engages students with the world as an object of learning while interacting with others, and helps the students connect what they are learning with their previous knowledge and experiences as well as their future lives.What curricula, pedagogies, assessments and learning environments facilitate such deep active learning? This book attempts to respond to that question by linking theory with practice.
The three-volume set of LNCS 11953, 11954, and 11955 constitutes the proceedings of the 26th International Conference on Neural Information Processing, ICONIP 2019, held in Sydney, Australia, in December 2019. The 173 full papers presented were carefully reviewed and selected from 645 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The second volume, LNCS 11954, is organized in topical sections on image processing by neural techniques; learning from incomplete data; model compression and optimisation; neural learning models; neural network applications; and social network computing.