Download Free Torsion Of Reinforced Concrete Book in PDF and EPUB Free Download. You can read online Torsion Of Reinforced Concrete and write the review.

Reinforced concrete structures are subjected to a complex variety of stresses and strains. The four basic actions are bending, axial load, shear, and torsion. Presently, there is no single comprehensive theory for reinforced concrete structural behavior that addresses all of these basic actions and their interactions. Furthermore, there is little consistency among countries around the world in their building codes, especially in the specifications for shear and torsion. Unified Theory of Reinforced Concrete addresses this serious problem by integrating available information with new research data, developing one unified theory of reinforced concrete behavior that embraces and accounts for all four basic actions and their combinations. The theory is presented in a systematic manner, elucidating its five component models from a pedagogical and historical perspective while emphasizing the fundamental principles of equilibrium, compatibility, and the constitutive laws of materials. The significance of relationships between models and their intrinsic consistencies are emphasized. This theory can serve as the foundation on which to build a universal design code that can be adopted internationally. In addition to frames, the book explains the fundamental concept of the design of wall-type and shell-type structures. Unified Theory of Reinforced Concrete will be an important reference for all engineers involved in the design of concrete structures. The book can also serve well as a text for a graduate course in structural engineering.
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
This book on Reinforced Concrete has been comprehensively revised with a view to make it more suitable for the updated syllabus of various Technical Institutes and Engineering Colleges of different Universities.
A PRACTICAL GUIDE TO REINFORCED CONCRETE STRUCTURE ANALYSIS AND DESIGN Reinforced Concrete Structures explains the underlying principles of reinforced concrete design and covers the analysis, design, and detailing requirements in the 2008 American Concrete Institute (ACI) Building Code Requirements for Structural Concrete and Commentary and the 2009 International Code Council (ICC) International Building Code (IBC). This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Design procedures and flowcharts guide you through code requirements, and worked-out examples demonstrate the proper application of the design provisions. COVERAGE INCLUDES: Mechanics of reinforced concrete Material properties of concrete and reinforcing steel Considerations for analysis and design of reinforced concrete structures Requirements for strength and serviceability Principles of the strength design method Design and detailing requirements for beams, one-way slabs, two-way slabs, columns, walls, and foundations
Unified Theory of Concrete Structures develops an integrated theory that encompasses the various stress states experienced by both RC & PC structures under the various loading conditions of bending, axial load, shear and torsion. Upon synthesis, the new rational theories replace the many empirical formulas currently in use for shear, torsion and membrane stress. The unified theory is divided into six model components: a) the struts-and-ties model, b) the equilibrium (plasticity) truss model, c) the Bernoulli compatibility truss model, d) the Mohr compatibility truss model, e) the softened truss model, and f) the softened membrane model. Hsu presents the six models as rational tools for the solution of the four basic types of stress, focusing on the significance of their intrinsic consistencies and their inter-relationships. Because of its inherent rationality, this unified theory of reinforced concrete can serve as the basis for the formulation of a universal and international design code. Includes an appendix and accompanying website hosting the authors’ finite element program SCS along with instructions and examples Offers comprehensive coverage of content ranging from fundamentals of flexure, shear and torsion all the way to non-linear finite element analysis and design of wall-type structures under earthquake loading. Authored by world-leading experts on torsion and shear
Principle of Reinforced Concrete introduces the main properties of structural concrete and its mechanical behavior under various conditions as well as all aspects of the combined function of reinforcement and concrete. Based on the experimental investigation, the variation regularity of mechanical behavior, working mechanism, and calculation method are presented for the structural member under various internal forces. After examining the basic principle and analysis method of reinforced concrete, the book covers some extreme circumstances, including fatigue load, earthquake, explosion, high temperature (fire accident), and durability damage, and the special responses and analysis methods of its member under these conditions. This work is valuable as a textbook for post-graduates, and can be used as a reference for university teachers and under-graduates in the structural engineering field. It is also useful for structural engineers engaged in scientific research, design, or construction. - Focuses on the principles of reinforced concrete, providing professional and academic readers with a single volume reference - Experimental data enables readers to make full use of the theory presented - The mechanical behavior of both concrete and reinforcement materials, plus the combined function of both are covered, enabling readers to understand the behaviors of reinforced concrete structures and their members - Covers behavior of the materials and members under normal and extreme conditions