Download Free Topological And Bivariant K Theory Book in PDF and EPUB Free Download. You can read online Topological And Bivariant K Theory and write the review.

Topological K-theory is one of the most important invariants for noncommutative algebras. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. This book describes a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, it details other approaches to bivariant K-theories for operator algebras. The book studies a number of applications, including K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.
Topological K-theory is one of the most important invariants for noncommutative algebras. Bott periodicity, homotopy invariance, and various long exact sequences distinguish it from algebraic K-theory. This book describes a bivariant K-theory for bornological algebras, which provides a vast generalization of topological K-theory. In addition, it details other approaches to bivariant K-theories for operator algebras. The book studies a number of applications, including K-theory of crossed products, the Baum-Connes assembly map, twisted K-theory with some of its applications, and some variants of the Atiyah-Singer Index Theorem.
This volume is an introductory textbook to K-theory, both algebraic and topological, and to various current research topics within the field, including Kasparov's bivariant K-theory, the Baum-Connes conjecture, the comparison between algebraic and topological K-theory of topological algebras, the K-theory of schemes, and the theory of dg-categories.
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions. Part of the most basic structural information for such a C*-algebra is contained in its K-theory. The determination of the K-groups of C*-algebras constructed from group or semigroup actions is a particularly challenging problem. Paul Baum and Alain Connes proposed a formula for the K-theory of the reduced crossed product for a group action that would permit, in principle, its computation. By work of many hands, the formula has by now been verified for very large classes of groups and this work has led to the development of a host of new techniques. An important ingredient is Kasparov's bivariant K-theory. More recently, also the C*-algebras generated by the regular representation of a semigroup as well as the crossed products for actions of semigroups by endomorphisms have been studied in more detail. Intriguing examples of actions of such semigroups come from ergodic theory as well as from algebraic number theory. The computation of the K-theory of the corresponding crossed products needs new techniques. In cases of interest the K-theory of the algebras reflects ergodic theoretic or number theoretic properties of the action.
Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.
These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.
Since its inception 50 years ago, K-theory has been a tool for understanding a wide-ranging family of mathematical structures and their invariants: topological spaces, rings, algebraic varieties and operator algebras are the dominant examples. The invariants range from characteristic classes in cohomology, determinants of matrices, Chow groups of varieties, as well as traces and indices of elliptic operators. Thus K-theory is notable for its connections with other branches of mathematics. Noncommutative geometry develops tools which allow one to think of noncommutative algebras in the same footing as commutative ones: as algebras of functions on (noncommutative) spaces. The algebras in question come from problems in various areas of mathematics and mathematical physics; typical examples include algebras of pseudodifferential operators, group algebras, and other algebras arising from quantum field theory. To study noncommutative geometric problems one considers invariants of the relevant noncommutative algebras. These invariants include algebraic and topological K-theory, and also cyclic homology, discovered independently by Alain Connes and Boris Tsygan, which can be regarded both as a noncommutative version of de Rham cohomology and as an additive version of K-theory. There are primary and secondary Chern characters which pass from K-theory to cyclic homology. These characters are relevant both to noncommutative and commutative problems and have applications ranging from index theorems to the detection of singularities of commutative algebraic varieties. The contributions to this volume represent this range of connections between K-theory, noncommmutative geometry, and other branches of mathematics.
This volume contains the proceedings of an NSF-CBMS Conference held at Texas Christian University in Fort Worth, Texas, May 18-22, 2009. The papers, written especially for this volume by well-known mathematicians and mathematical physicists, are an outgrowth of the talks presented at the conference. Topics examined are highly interdisciplinary and include, among many other things, recent results on D-brane charges in $K$-homology and twisted $K$-homology, Yang-Mills gauge theory and connections with non-commutative geometry, Landau-Ginzburg models, $C^*$-algebraic non-commutative geometry and ties to quantum physics and topology, the rational homotopy type of the group of unitary elements in an Azumaya algebra, and functoriality properties in the theory of $C^*$-crossed products and fixed point algebras for proper actions. An introduction, written by Jonathan Rosenberg, provides an instructive overview describing common themes and how the various papers in the volume are interrelated and fit together. The rich diversity of papers appearing in the volume demonstrates the current interplay between superstring theory, geometry/topology, and non-commutative geometry. The book will be of interest to graduate students, mathematicians, mathematical physicists, and researchers working in these areas.