Download Free Topics In The Theory Of Solid Materials Book in PDF and EPUB Free Download. You can read online Topics In The Theory Of Solid Materials and write the review.

Topics in the Theory of Solid Materials provides a clear and rigorous introduction to a wide selection of topics in solid materials, overlapping traditional courses in both condensed matter physics and materials science and engineering. It introduces both the continuum properties of matter, traditionally the realm of materials science courses, and the quantum mechanical properties that are usually more emphasized in solid state physics courses, and integrates them in a manner that will be of use to students of either subject. The book spans a range of basic and more advanced topics, including stress and strain, wave propagation, thermal properties, surface waves, polarons, phonons, point defects, magnetism, and charge density waves. Topics in the Theory of Solid Materials is eminently suitable for graduates and final-year undergraduates in physics, materials science, and engineering, as well as more advanced researchers in academia and industry studying solid materials.
Presents an introduction to a wide selection of topics in solid materials. This book covers stress and strain, wave propagation, thermal properties, surface waves, polarons, phonons, point defects, magnetism, and charge density waves.
While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.
Aimed at graduate students and researchers, this book covers the key aspects of the modern quantum theory of solids, including up-to-date ideas such as quantum fluctuations and strong electron correlations. It presents in the main concepts of the modern quantum theory of solids, as well as a general description of the essential theoretical methods required when working with these systems. Diverse topics such as general theory of phase transitions, harmonic and anharmonic lattices, Bose condensation and superfluidity, modern aspects of magnetism including resonating valence bonds, electrons in metals, and strong electron correlations are treated using unifying concepts of order and elementary excitations. The main theoretical tools used to treat these problems are introduced and explained in a simple way, and their applications are demonstrated through concrete examples.
This book provides course material in theoretical physics intended for undergraduate and graduate students specializing in condensed matter. The book derives from teaching activity, offering readable and mathematical treatments explained in sufficient detail to be followed easily. The main emphasis is always on the physical meaning and applicability of the results. Many examples are provided for illustration; these also serve as worked problems. Discussion extends to atomic physics, relativistic quantum mechanics, elementary QED, electron spectroscopy, nonlinear optics, and various aspects of the many-body problem. Methods such as group representation theory, Green’s functions, the Keldysh formalism and recursion techniques were also imparted.
Quantum Theory of Solids presents a concisely-structured tour of the theory relating to chemical bonding and its application to the three most significant topics in solid state physics: semiconductors, magnetism, and superconductivity--topics that have seen major advances in recent years. This is a unique treatment that develops the concepts of quantum theory for the solid state from the basics through to an advanced level, encompassing additional quantum mechanics techniques, such as the variational method and perturbation theory. Written at the senior undergraduate/masters level, it provides an exceptional grounding in the subject.
While the standard solid state topics are covered, the basic ones often have more detailed derivations than is customary (with an empasis on crystalline solids). Several recent topics are introduced, as are some subjects normally included only in condensed matter physics. Lattice vibrations, electrons, interactions, and spin effects (mostly in magnetism) are discussed the most comprehensively. Many problems are included whose level is from "fill in the steps" to long and challenging, and the text is equipped with references and several comments about experiments with figures and tables.
"Solid-State Theory - An Introduction" is a textbook for graduate students of physics and material sciences. Whilst covering the traditional topics of older textbooks, it also takes up new developments in theoretical concepts and materials that are connected with such breakthroughs as the quantum-Hall effects, the high-Tc superconductors, and the low-dimensional systems realized in solids. Thus besides providing the fundamental concepts to describe the physics of the electrons and ions comprising the solid, including their interactions, the book casts a bridge to the experimental facts and gives the reader an excellent insight into current research fields. A compilation of problems makes the book especially valuable to both students and teachers.
The structure of much of solid-state theory comes directly from group theory, but until now there has been no elementary introduction to the band theory of solids using this approach. Employing the most basic of group theoretical ideas, and emphasizing the significance of symmetry in determining many of the essential concepts, this is the only book to provide such an introduction. Many topics were chosen with the needs of chemists in mind, and numerous problems are included to enable the reader to apply the major ideas and to complete some parts of the treatment. Physical scientists will also find this a valuable introduction to the field.
here exists a gap in the present literature on quantum mechanics T and its application to solids. It has been difficult to find an intro ductory textbook which could take a student from the elementary quan tum mechanical ideas of the single-particle Schrodinger equations, through the formalism and new physical concepts of many-body theory, to the level where the student would be equipped to read the scientific literature and specialized books on specific topics. The present book, which I believe fills this gap, grew out of two courses which I have given for a number of years at the University of Cambridge: "Advanced Quan tum Mechanics," covering the quantization of fields, representations, and creation and annihilation operators, and "Many Body Theory," on the application of quantum field theory to solids. The first course is a final-year undergraduate physics course while the second is a joint first and fourth-year undergraduate math year postgraduate physics course ematics course. In an American context this would closely correspond to a graduate course at the masters level. In writing this book I have tried to stress the physical aspects of the mathematics preferring where possible to introduce a technique by using a simple illustrative example rather than develop a purely formal treat ment. In order to do this I have assumed a certain familiarity with solid state physics on the level of a normal undergraduate course, but the book should also be useful to those without such a background.