Download Free Time Optimal Control In High Order Nonlinear Power Systems Book in PDF and EPUB Free Download. You can read online Time Optimal Control In High Order Nonlinear Power Systems and write the review.

This volume discusses advances in applied nonlinear optimal control, comprising both theoretical analysis of the developed control methods and case studies about their use in robotics, mechatronics, electric power generation, power electronics, micro-electronics, biological systems, biomedical systems, financial systems and industrial production processes. The advantages of the nonlinear optimal control approaches which are developed here are that, by applying approximate linearization of the controlled systems’ state-space description, one can avoid the elaborated state variables transformations (diffeomorphisms) which are required by global linearization-based control methods. The book also applies the control input directly to the power unit of the controlled systems and not on an equivalent linearized description, thus avoiding the inverse transformations met in global linearization-based control methods and the potential appearance of singularity problems. The method adopted here also retains the known advantages of optimal control, that is, the best trade-off between accurate tracking of reference setpoints and moderate variations of the control inputs. The book’s findings on nonlinear optimal control are a substantial contribution to the areas of nonlinear control and complex dynamical systems, and will find use in several research and engineering disciplines and in practical applications.
This book presents the latest research on switching control, adaptive switching control, and their applications in the transient stability control and analysis of large-scale complex power systems. In large-scale complex power systems, renewable power generators, flexible power electronics converters, and distributed controllers are widely employed. Due to the poor overcurrent tolerance capability of power electronics converters and lacking of coordination mechanism, stability control in events, such as natural disasters, cascaded faults, and severe disturbances, is viewed as the key challenge in the operation of these systems. High-performance self-coordinated controllers are needed for the control of important power sources and power electronics converters. Adaptive switching controllers are a group of controllers designed by the authors for the control of various renewable power generators, synchronous generators, and modular multilevel converters. These controllers operate in a self-coordinated manner and aim to employ the largest transient control energy of converters and power sources. Imbalance between power generation and consumption is largely filled by the application of these controllers, and transient stability of power systems can be significantly improved. This book covers both the preliminary knowledge and key proofs in the design and stability analysis of adaptive switching control systems, and considerable simulation and experimental results are presented to illustrate the application and performance of the controllers. This book is used as a reference book for researchers and engineers in fields of electrical engineering and control engineering.
This book is devoted to new methods of control for complex dynamical systems and deals with nonlinear control systems having several degrees of freedom, subjected to unknown disturbances, and containing uncertain parameters. Various constraints are imposed on control inputs and state variables or their combinations. The book contains an introduction to the theory of optimal control and the theory of stability of motion, and also a description of some known methods based on these theories. Major attention is given to new methods of control developed by the authors over the last 15 years. Mechanical and electromechanical systems described by nonlinear Lagrange’s equations are considered. General methods are proposed for an effective construction of the required control, often in an explicit form. The book contains various techniques including the decomposition of nonlinear control systems with many degrees of freedom, piecewise linear feedback control based on Lyapunov’s functions, methods which elaborate and extend the approaches of the conventional control theory, optimal control, differential games, and the theory of stability. The distinctive feature of the methods developed in the book is that the c- trols obtained satisfy the imposed constraints and steer the dynamical system to a prescribed terminal state in ?nite time. Explicit upper estimates for the time of the process are given. In all cases, the control algorithms and the estimates obtained are strictly proven.
This textbook gives a clear introduction to the theory and application of nonlinear systems and controls. The author introduces and explains the methods of nonlinear control, which are becoming increasingly important in research and industrial applications. The main features of the book are the comprehensive presentation of the theory, excellent comprehensibility, the many example applications, and more than a hundred exercises with solutions. They are illustrated by many color diagrams. This book is aimed at advanced engineering students and engineers in industry.
Over the last 50 years or so, a number of textbooks, monographs and even popular books have been published on nonlinear control theory and design methods. In the area of classical control, for example, there exist books concerned with phase-plane analysis, describing function approach, absolute stability and so on. In the area of modern control there are those related to optimal control, using differential geometry and the differential algebra method, variable structural control, H-infinite control and so on. These books have been useful in promoting the development of automatic control science and technology. Since 1990 there have been many new results and contributions in the area of nonlinear control. This book introduces those topics to interested readers. It will also benefit automation engineers, researchers and scholars in related fields.
Unique in scope, Optimal Control: Weakly Coupled Systems and Applications provides complete coverage of modern linear, bilinear, and nonlinear optimal control algorithms for both continuous-time and discrete-time weakly coupled systems, using deterministic as well as stochastic formulations. This book presents numerous applications to real world systems from various industries, including aerospace, and discusses the design of subsystem-level optimal filters. Organized into independent chapters for easy access to the material, this text also contains several case studies, examples, exercises, computer assignments, and formulations of research problems to help instructors and students.
This two-volume set constitutes the refereed proceedings of the 8th International Workshop on Advanced Computational Intelligence and Intelligent Informatics, IWACIII 2023, held in Beijing, China, in November 2023. The 56 papers presented were thoroughly reviewed and selected from the 118 qualifies submissions. They are organized in the topical sections on intelligent information processing; intelligent optimization and decision-making; pattern recognition and computer vision; advanced control; multi-agent systems; robotics.
The present monograph offers a detailed and in-depth analysis of the topic of Intelligent Control for Electric Power Systems and Electric Vehicles. First, Nonlinear optimal control and Lie algebra-based control (Control based on approximate linearization and Global linearization-based control concepts) is analyzed. Next, Differential flatness theory and flatness-based control methods (Global linearization-based control with the use of differential flatness theory and Flatness-based control of nonlinear dynamical systems in cascading loops) is treated. Following the control theoretic part Control of DC and PMBLDC electric motors (Control of DC motors through a DC-DC converter and Control of Per- manent Magnet Brushless DC motors) is presented. Besides, Control of VSI-fed three-phase and multi- phase PMSMs (Nonlinear optimal control VSI-fed three-phase PMSMs and Nonlinear optimal control VSI-fed six-phase PMSMs) is explained. Additionally, Control of energy conversion chains based on PMSMs (Control of wind-turbine and PMSM-based electric power unit and Control of a PMSM-driven gas-compression unit) is studied. Besides, Control of energy conversion chains based on Induction Ma- chines (Control of the VSI-fed three-phase induction motor, Control of an induction motor-driven gas compressor and Control of induction generator-based shipboard microgrids) is explained. Next, Control of multi-phase machines in gas processing and power units (Control of gas-compressors actuated by 5-phase PMSMs and Control of 6-phase induction generators in renewable energy units) is introduced, Moreover, Control of Spherical Permanent Magnet Synchronous Motors and Switched Reluctance Mo- tors (Control of spherical permanent magnet synchronous motors, Control of switched reluctance motors for electric traction and Adaptive control for switched reluctance motors) is analyzed, Furthermore, Control of traction and powertrains in Electric Vehicles and Hybrid Electric Vehicles (Control of multi- phase motors in the traction system in electric vehicles and Control of synchronous machines and converters in power-chains of hybrid electric vehicles) is explained, Finally, Control of renewable power units and heat management units (Control of residential microgrids with Wind Generators, Fuel Cells and PVs and Control of heat pumps for thermal management in electric vehicles) it treated. The new control methods which are proposed by the monograph treat the control problem of the complex nonlinear dynamics of electric power systems and electric vehicles without the need for complicated state-space model transformations and changes of state variables. The proposed control schemes are modular and scalable and can be applied to a large class of dynamic models of electric power systems and electric vehicles. They have a clear and easy-to- implement algorithmic part, while they also exhibit a moderate computational load. The proposed control schemes foster the optimized exploitation of renewable energy sources and the reliable integration of renewable energy units in the power grid. Besides, they support the transition to electromotion and the deployment of the use of electric vehicles. The manuscript is suitable for teaching nonlinear control, estimation and fault diagnosis topics with emphasis to electric power systems and to electric vehicle traction and propulsion systems both at late undergraduate and postgraduate levels.