Download Free Three Lectures On Fermats Last Theorem By L J Mordell Book in PDF and EPUB Free Download. You can read online Three Lectures On Fermats Last Theorem By L J Mordell and write the review.

Lecture I The Early History of Fermat's Last Theorem.- 1 The Problem.- 2 Early Attempts.- 3 Kummer's Monumental Theorem.- 4 Regular Primes.- 5 Kummer's Work on Irregular Prime Exponents.- 6 Other Relevant Results.- 7 The Golden Medal and the Wolfskehl Prize.- Lecture II Recent Results.- 1 Stating the Results.- 2 Explanations.- Lecture III B.K. = Before Kummer.- 1 The Pythagorean Equation.- 2 The Biquadratic Equation.- 3 The Cubic Equation.- 4 The Quintic Equation.- 5 Fermat's Equation of Degree Seven.- Lecture IV The Naïve Approach.- 1 The Relations of Barlow and Abel.- 2 Sophie Germain.- 3 Co.
In 1995, Andrew Wiles completed a proof of Fermat's Last Theorem. Although this was certainly a great mathematical feat, one shouldn't dismiss earlier attempts made by mathematicians and clever amateurs to solve the problem. In this book, aimed at amateurs curious about the history of the subject, the author restricts his attention exclusively to elementary methods that have produced rich results.
The theory of numbers is generally considered to be the 'purest' branch of pure mathematics and demands exactness of thought and exposition from its devotees. It is also one of the most highly active and engaging areas of mathematics. Now into its eighth edition The Higher Arithmetic introduces the concepts and theorems of number theory in a way that does not require the reader to have an in-depth knowledge of the theory of numbers but also touches upon matters of deep mathematical significance. Since earlier editions, additional material written by J. H. Davenport has been added, on topics such as Wiles' proof of Fermat's Last Theorem, computers and number theory, and primality testing. Written to be accessible to the general reader, with only high school mathematics as prerequisite, this classic book is also ideal for undergraduate courses on number theory, and covers all the necessary material clearly and succinctly.
Includes section "Recent publications."
The investigation of three problems, perfect numbers, periodic decimals, and Pythagorean numbers, has given rise to much of elementary number theory. In this book, Daniel Shanks, past editor of Mathematics of Computation, shows how each result leads to further results and conjectures. The outcome is a most exciting and unusual treatment. This edition contains a new chapter presenting research done between 1962 and 1978, emphasizing results that were achieved with the help of computers.
This book arose from a course of lectures given by the first author during the winter term 1977/1978 at the University of Münster (West Germany). The course was primarily addressed to future high school teachers of mathematics; it was not meant as a systematic introduction to number theory but rather as a historically motivated invitation to the subject, designed to interest the audience in number-theoretical questions and developments. This is also the objective of this book, which is certainly not meant to replace any of the existing excellent texts in number theory. Our selection of topics and examples tries to show how, in the historical development, the investigation of obvious or natural questions has led to more and more comprehensive and profound theories, how again and again, surprising connections between seemingly unrelated problems were discovered, and how the introduction of new methods and concepts led to the solution of hitherto unassailable questions. All this means that we do not present the student with polished proofs (which in turn are the fruit of a long historical development); rather, we try to show how these theorems are the necessary consequences of natural questions. Two examples might illustrate our objectives.