Download Free Three Lectures On Fermats Last Theorem Book in PDF and EPUB Free Download. You can read online Three Lectures On Fermats Last Theorem and write the review.

Lecture I The Early History of Fermat's Last Theorem.- 1 The Problem.- 2 Early Attempts.- 3 Kummer's Monumental Theorem.- 4 Regular Primes.- 5 Kummer's Work on Irregular Prime Exponents.- 6 Other Relevant Results.- 7 The Golden Medal and the Wolfskehl Prize.- Lecture II Recent Results.- 1 Stating the Results.- 2 Explanations.- Lecture III B.K. = Before Kummer.- 1 The Pythagorean Equation.- 2 The Biquadratic Equation.- 3 The Cubic Equation.- 4 The Quintic Equation.- 5 Fermat's Equation of Degree Seven.- Lecture IV The Naïve Approach.- 1 The Relations of Barlow and Abel.- 2 Sophie Germain.- 3 Co.
In 1995, Andrew Wiles completed a proof of Fermat's Last Theorem. Although this was certainly a great mathematical feat, one shouldn't dismiss earlier attempts made by mathematicians and clever amateurs to solve the problem. In this book, aimed at amateurs curious about the history of the subject, the author restricts his attention exclusively to elementary methods that have produced rich results.
The pioneering work of Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book provides an overview of the many properties of Fermat numbers and demonstrates their applications in areas such as number theory, probability theory, geometry, and signal processing. It is an ideal introduction to the basic mathematical ideas and algebraic methods connected with the Fermat numbers.
Introducing the Collins Modern Classics, a series featuring some of the most significant books of recent times, books that shed light on the human experience - classics which will endure for generations to come.
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
From bestselling author of Fermat's Last Theorem, a must-have for number lovers and Simpsons fans
A collection of expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held at Boston University. The purpose of the conference, and indeed this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof, and to explain how his result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications.
"Glorious."—Wall Street Journal Rescued from obscurity, Feynman's Lost Lecture is a blessing for all Feynman followers. Most know Richard Feynman for the hilarious anecdotes and exploits in his best-selling books "Surely You're Joking, Mr. Feynman!" and "What Do You Care What Other People Think?" But not always obvious in those stories was his brilliance as a pure scientist—one of the century's greatest physicists. With this book and CD, we hear the voice of the great Feynman in all his ingenuity, insight, and acumen for argument. This breathtaking lecture—"The Motion of the Planets Around the Sun"—uses nothing more advanced than high-school geometry to explain why the planets orbit the sun elliptically rather than in perfect circles, and conclusively demonstrates the astonishing fact that has mystified and intrigued thinkers since Newton: Nature obeys mathematics. David and Judith Goodstein give us a beautifully written short memoir of life with Feynman, provide meticulous commentary on the lecture itself, and relate the exciting story of their effort to chase down one of Feynman's most original and scintillating lectures.
This book presents a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Each of the twelve chapters focuses on a particular topic devoted to special cases of the program. The book is suitable for graduate students and researchers.