Download Free Three Dimensional Scene Representation Using Structured Light Book in PDF and EPUB Free Download. You can read online Three Dimensional Scene Representation Using Structured Light and write the review.

Techniques for 3-D Machine Perception
One of the grand challenges of artificial intelligence is to enable computers to interpret 3D scenes and objects from imagery. This book organizes and introduces major concepts in 3D scene and object representation and inference from still images, with a focus on recent efforts to fuse models of geometry and perspective with statistical machine learning. The book is organized into three sections: (1) Interpretation of Physical Space; (2) Recognition of 3D Objects; and (3) Integrated 3D Scene Interpretation. The first discusses representations of spatial layout and techniques to interpret physical scenes from images. The second section introduces representations for 3D object categories that account for the intrinsically 3D nature of objects and provide robustness to change in viewpoints. The third section discusses strategies to unite inference of scene geometry and object pose and identity into a coherent scene interpretation. Each section broadly surveys important ideas from cognitive science and artificial intelligence research, organizes and discusses key concepts and techniques from recent work in computer vision, and describes a few sample approaches in detail. Newcomers to computer vision will benefit from introductions to basic concepts, such as single-view geometry and image classification, while experts and novices alike may find inspiration from the book's organization and discussion of the most recent ideas in 3D scene understanding and 3D object recognition. Specific topics include: mathematics of perspective geometry; visual elements of the physical scene, structural 3D scene representations; techniques and features for image and region categorization; historical perspective, computational models, and datasets and machine learning techniques for 3D object recognition; inferences of geometrical attributes of objects, such as size and pose; and probabilistic and feature-passing approaches for contextual reasoning about 3D objects and scenes. Table of Contents: Background on 3D Scene Models / Single-view Geometry / Modeling the Physical Scene / Categorizing Images and Regions / Examples of 3D Scene Interpretation / Background on 3D Recognition / Modeling 3D Objects / Recognizing and Understanding 3D Objects / Examples of 2D 1/2 Layout Models / Reasoning about Objects and Scenes / Cascades of Classifiers / Conclusion and Future Directions
Proceedings of an IEEE conference (see title) held June 1989, San Diego, CA. Topics include: edge detection; shape form; morphology, neural networks; image and texture segmentation; monocular, polarization cues; architecture, systems. No index. Annotation copyrighted by Book News, Inc., Portland, OR.
This book gathers selected papers presented at the conference “Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology,” one of the first initiatives devoted to the problems of 3D imaging in all contemporary scientific and application areas. The aim of the conference was to establish a platform for experts to combine their efforts and share their ideas in the related areas in order to promote and accelerate future development. This second volume discusses algorithms and applications, focusing mainly on the following topics: 3D printing technologies; naked, dynamic and auxiliary 3D displays; VR/AR/MR devices; VR camera technologies; microprocessors for 3D data processing; advanced 3D computing systems; 3D data-storage technologies; 3D data networks and technologies; 3D data intelligent processing; 3D data cryptography and security; 3D visual quality estimation and measurement; and 3D decision support and information systems.
Machine Vision for Three-Dimensional Scenes contains the proceedings of the workshop "Machine Vision - Acquiring and Interpreting the 3D Scene" sponsored by the Center for Computer Aids for Industrial Productivity (CAIP) at Rutgers University and held in April 1989 in New Brunswick, New Jersey. The papers explore the applications of machine vision in image acquisition and 3D scene interpretation and cover topics such as segmentation of multi-sensor images; the placement of sensors to minimize occlusion; and the use of light striping to obtain range data. Comprised of 14 chapters, this book opens with a discussion on 3D object recognition and the problems that arise when dealing with large object databases, along with solutions to these problems. The reader is then introduced to the free-form surface matching problem and object recognition by constrained search. The following chapters address the problem of machine vision inspection, paying particular attention to the use of eye tracking to train a vision system; images of 3D scenes and the attendant problems of image understanding; the problem of object motion; and real-time range mapping. The final chapter assesses the relationship between the developing machine vision technology and the marketplace. This monograph will be of interest to practitioners in the fields of computer science and applied mathematics.
Viele Anwendungen des Maschinellen Sehens benötigen die automatische Analyse und Rekonstruktion von statischen und dynamischen Szenen. Deshalb ist die automatische Analyse von dreidimensionalen Szenen und Objekten ein Bereich der intensiv erforscht wird. Die meisten Ansätze konzentrieren sich auf die Rekonstruktion statischer Szenen, da die Rekonstruktion nicht-statischer Geometrien viel herausfordernder ist und voraussetzt, dass dreidimensionale Szeneninformation mit hoher zeitlicher Auflösung verfügbar ist. Statische Szenenanalyse wird beispielsweise in der autonomen Navigation, für die Überwachung und für die Erhaltung des Kulturerbes eingesetzt. Andererseits eröffnet die Analyse und Rekonstruktion nicht-statischer Geometrie viel mehr Möglichkeiten, nicht nur für die bereits erwähnten Anwendungen. In der Produktion von Medieninhalten für Film und Fernsehen kann die Analyse und die Aufnahme und Wiedergabe von vollständig dreidimensionalen Inhalten verwendet werden um neue Ansichten realer Szenen zu erzeugen oder echte Schauspieler durch animierte virtuelle Charaktere zu ersetzen. Die wichtigste Voraussetzung für die Analyse von dynamischen Inhalten ist die Verfügbarkeit von zuverlässigen dreidimensionalen Szeneninformationen. Um die Entfernung von Punkten in der Szene zu bestimmen wurden meistens Stereo-Verfahren eingesetzt, aber diese Verfahren benötigen viel Rechenzeit und erreichen in Echtzeit nicht die benötigte Qualität. In den letzten Jahren haben die so genannten Laufzeitkameras das Stadium der Prototypen verlassen und sind jetzt in der Lage dichte Tiefeninformationen in vernünftiger Qualität zu einem vernünftigen Preis zu liefern. Diese Arbeit untersucht die Eignung dieser Kameras für die Analyse nicht-statischer dreidimensionaler Szenen. Bevor eine Laufzeitkamera für die Analyse eingesetzt werden kann muss sie intern und extern kalibriert werden. Darüber hinaus leiden Laufzeitkameras an systematischen Fehlern bei der Entfernungsmessung, bedingt durch ihr
Choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, this handbook gives an in-depth look at the most popular 3D imaging techniques. Written by key players in the field and inventors of important imaging technologies, it helps you understand the core of 3D imaging technology and choose the proper 3D imaging technique for your needs. For each technique, the book provides its mathematical foundations, summarizes its successful applications, and discusses its limitations.
Mapping Archaeological Landscapes from Space offers a concise overview of air and spaceborne imagery and related geospatial technologies tailored to the needs of archaeologists. Leading experts including scientists involved in NASA’s Space Archaeology program provide technical introductions to five sections: 1) Historic Air and Spaceborne Imagery 2) Multispectral and Hyperspectral Imagery 3) Synthetic Aperture Radar 4) Lidar 5) Archaeological Site Detection and Modeling Each of these five sections includes two or more case study applications that have enriched understanding of archaeological landscapes in regions including the Near East, East Asia, Europe, Meso- and North America. Targeted to the needs of researchers and heritage managers as well as graduate and advanced undergraduate students, this volume conveys a basic technological sense of what is currently possible and, it is hoped, will inspire new pioneering applications. Particular attention is paid to the tandem goals of research (understanding) and archaeological heritage management (preserving) the ancient past. The technologies and applications presented can be used to characterize environments, detect archaeological sites, model sites and settlement patterns and, more generally, reveal the dialectic landscape-scale dynamics among ancient peoples and their social and environmental surroundings. In light of contemporary economic development and resultant damage to and destruction of archaeological sites and landscapes, applications of air and spaceborne technologies in archaeology are of wide utility and promoting understanding of them is a particularly appropriate goal at the 40th anniversary of the World Heritage Convention.​
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.