Download Free Thermodynamics In Bioenergetics Book in PDF and EPUB Free Download. You can read online Thermodynamics In Bioenergetics and write the review.

This book aims to supply students with the knowledge and understanding of the critical concepts and theories that are needed in the biochemistry and bioenergetics fields. Biochemical reactions highlighting thermodynamics, chemical kinetics, enzymes, the notions of Gibbs energy, entropy, and exergonic and endergonic reaction
No description is available at this time.
This inter-disciplinary guide to the thermodynamics of living organisms has been thoroughly revised and updated to provide a uniquely integrated overview of the subject. Retaining its highly readable style, it will serve as an introduction to the study of energy transformation in the life sciences and particularly as an accessible means for biology, biochemistry and bioengineering undergraduate students to acquaint themselves with the physical dimension of their subject. The emphasis throughout the text is on understanding basic concepts and developing problem-solving skills. The mathematical difficulty increases gradually by chapter, but no calculus is required. Topics covered include energy and its transformation, the First Law of Thermodynamics, Gibbs free energy, statistical thermodynamics, binding equilibria and reaction kinetics. Each chapter comprises numerous illustrative examples taken from different areas of biochemistry, as well as a broad range of exercises and references for further study.
Thermodynamics in Bioenergetics aims to supply students with the knowledge and understanding of the critical concepts and theories that are needed in the biochemistry and bioenergetics fields. Biochemical reactions highlighting thermodynamics, chemical kinetics, and enzymes are addressed in the text. Author, Jean-Louis Burgot, guides the reader through the starting points, strategy description, and theory results to facilitate their comprehension of the theories and examples being discussed in the book. Also discussed in the text are the notions of Gibbs energy, entropy, and exergonic and endergonic reactions.
"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.
What a journey writing this text has been. The lengthy voyage started well before the idea hatched of authoring a text that contained the word “thermodynamics”! I was informed by my good friend and sometimes colleague Dr. Jose Antonio that by including that word in the title, nutritionists and exercise physiologists might avoid the subject. But almost every step of my expedition was taken on a rather solid foundation of thermodynamics and as such the topic could not possibly be omitted from the title or the text of a book about bioenergetics and energy expenditure. I am not a physicist. In fact I ?rst went to college to become a football coach. That vocational choice began to deteriorate when taking the mandatory anatomy and physiology courses required of all physical education majors. This information was exciting; my interest in physical education began to wane. During sophomore year, I answered an advertisement in the school newspaper requesting research subjects.
Bioenergetics deals with the very first energy transformation steps performed by living cells. Increased dissipation is the primary effect of processing external energy packages. Enzyme-supported charge separation is the minor but essential outcome for maintaining life. This book explores the usefulness of dissecting the entropy production of enzymes involved in cellular defenses, fermentation, respiration, and photosynthesis, assuming that tightly regulated dissipation is the hallmark of life. Researchers, educators, and students of life sciences can find in this text many examples of how we can use the interdisciplinary approach to study cells' virtuoso ability to connect the microscopic to the macroscopic world. Each chapter is a self-contained unit with a glossary and selected references for further reading.
Bioenergetics 2 aims to clarify topics such as the thermodynamics of bioenergetic processes and the stoichiometries of energy coupling reactions. The book discusses chemiosmotic energy transduction; ion transport across energy-conserving membranes; and quantitative bioenergenetics as the measurement of driving forces. The text also describes the chemiosmotic proton circuit; the respiratory chain; the photosynthetic generators of protonmotive force; and the ATP synthase. The secondary transport of products across the membrane, as well as the structures of the bacterial photosynthetic reaction center and bacteriorhodopsin are also considered. Biochemists will find the book invaluable.
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]
Navigate the complexities of biochemical thermodynamics with Mathematica(r) Chemical reactions are studied under the constraints of constant temperature and constant pressure; biochemical reactions are studied under the additional constraints of pH and, perhaps, pMg or free concentrations of other metal ions. As more intensive variables are specified, more thermodynamic properties of a system are defined, and the equations that represent thermodynamic properties as a function of independent variables become more complicated. This sequel to Robert Alberty's popular Thermodynamics of Biochemical Reactions describes how researchers will find Mathematica(r) a simple and elegant tool, which makes it possible to perform complex calculations that would previously have been impractical. Biochemical Thermodynamics: Applications of Mathematica(r) provides a comprehensive and rigorous treatment of biochemical thermodynamics using Mathematica(r) to practically resolve thermodynamic issues. Topics covered include: * Thermodynamics of the dissociation of weak acids * Apparent equilibrium constants * Biochemical reactions at specified temperatures and various pHs * Uses of matrices in biochemical thermodynamics * Oxidoreductase, transferase, hydrolase, and lyase reactions * Reactions at 298.15K * Thermodynamics of the binding of ligands by proteins * Calorimetry of biochemical reactions Because Mathematica(r) allows the intermingling of text and calculations, this book has been written in Mathematica(r) and includes a CD-ROM containing the entire book along with macros that help scientists and engineers solve their particular problems.