Download Free Thermodynamics And Gas Dynamics Of The Stirling Cycle Machine Book in PDF and EPUB Free Download. You can read online Thermodynamics And Gas Dynamics Of The Stirling Cycle Machine and write the review.

This 1992 book provides a coherent and comprehensive treatment of the thermodynamics and gas dynamics of the practical Stirling cycle. Invented in 1816, the Stirling engine is the subject of worldwide research and development on account of unique qualities - silence, indifference to heat source, low level of emissions when burning conventional fuels and an ability to function in reverse as heat pump or refrigerator. The student of engineering will discover an instructure and illuminating case study revealing the interactions of basic disciplines. The researcher will find the groundwork prepared for various types of computer simulation, Those involved in the use and teaching of solution methods for unsteady gas dynamics problems will find a comprehensive treatment on nonlinear and linear wave approaches, for the Stirling machine provides an elegant example of the application of each. The book will be of use to all those involved in researching, designing or manufacturing Stirling prime movers, coolers and related regenerative thermal machines.
Modern technology calls increasingly for provision of cooling at cryogenic temperatures: super-conductivity research; imaging equipment for search-and-rescue; contemporary diagnostic medicine (MRI – magnetic resonance imaging); space exploration; advanced computer hardware; military defence systems. Where it is desirable to generate the cooling effect close to the point of heat removal, electrically powered Stirling and pulse-tube machines offer advantages over traditional, passive systems (Leidenfrost and Joule-Thomson). Until now there has been no agreed approach to the thermodynamic design of either type. In particular, the choice of regenerator packing has remained a matter for time-consuming – and thus expensive – trial-and-error development. There has been no way of knowing whether an existing ‘fully developed’ unit is performing to the limit of its thermodynamic potential. Stirling and Pulse-tube Cryo-coolers addresses these problems. Features include: An ideal cycle for the pulse-tube yielding heat, mass-flow and work; Previously unseen phenomena of real gas behaviour; Pictorial reliefs of pressure wave interactions; Multiple wave reflections in graphic perspective First solution of the ‘regenerator problem ‘ by a full, unsteady gas dynamics treatment; First ever depiction of pulse-tube boundary-layer events (heat conduction, ‘streaming’) driven by interacting left-and right-running pressure waves First analysis of the graded regenerator and optimisation of gas path design; Embryonic ‘cook-book’ method of ab initio cooler design based on dynamic similarity and thermodynamic scaling. Stirling and Pulse-tube Cryo-coolers raises the threshold from which first-principles design of regenerative cryo-coolers may start. Those wishing to extend their study of the subject beyond the well-trodden, ideal gas/quasi-steady-state rationalisations will require this book.
Modelling, Assessment, and Optimization of Energy Systems provides comprehensive methodologies for the thermal modelling of energy systems based on thermodynamic, exergoeconomic and exergoenviromental approaches. It provides advanced analytical approaches, assessment criteria and the methodologies to obtain analytical expressions from the experimental data. The concept of single-objective and multi-objective optimization with application to energy systems is provided, along with decision-making tools for multi-objective problems, multi-criteria problems, for simplifying the optimization of large energy systems, and for exergoeconomic improvement integrated with a simulator EIS method. This book provides a comprehensive methodology for modeling, assessment, improvement of any energy system with guidance, and practical examples that provide detailed insights for energy engineering, mechanical engineering, chemical engineering and researchers in the field of analysis and optimization of energy systems. - Offers comprehensive analytical tools for the modeling and simulation of energy systems with applications for decision-making tools - Provides methodologies to obtain analytical models of energy systems for experimental data - Covers decision-making tools in multi-objective problems
Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concept. Stirling Cycle Engines re-visits the design challenge, doing so in three stages. Firstly, unrealistic expectations are dispelled: chasing the Carnot efficiency is a guarantee of disappointment, since the Stirling engine has no such pretentions. Secondly, no matter how complex the gas processes, they embody a degree of intrinsic similarity from engine to engine. Suitably exploited, this means that a single computation serves for an infinite number of design conditions. Thirdly, guidelines resulting from the new approach are condensed to high-resolution design charts – nomograms. Appropriately designed, the Stirling engine promises high thermal efficiency, quiet operation and the ability to operate from a wide range of heat sources. Stirling Cycle Engines offers tools for expediting feasibility studies and for easing the task of designing for a novel application. Key features: Expectations are re-set to realistic goals. The formulation throughout highlights what the thermodynamic processes of different engines have in common rather than what distinguishes them. Design by scaling is extended, corroborated, reduced to the use of charts and fully Illustrated. Results of extensive computer modelling are condensed down to high-resolution Nomograms. Worked examples feature throughout. Prime movers (and coolers) operating on the Stirling cycle are of increasing interest to industry, the military (stealth submarines) and space agencies. Stirling Cycle Engines fills a gap in the technical literature and is a comprehensive manual for researchers and practitioners. In particular, it will support effort world-wide to exploit potential for such applications as small-scale CHP (combined heat and power), solar energy conversion and utilization of low-grade heat.
A comprehensive assessment of the methodologies of thermodynamic optimization, exergy analysis and thermoeconomics, and their application to the design of efficient and environmentally sound energy systems. The chapters are organized in a sequence that begins with pure thermodynamics and progresses towards the blending of thermodynamics with other disciplines, such as heat transfer and cost accounting. Three methods of analysis stand out: entropy generation minimization, exergy (or availability) analysis, and thermoeconomics. The book reviews current directions in a field that is both extremely important and intellectually alive. Additionally, new directions for research on thermodynamics and optimization are revealed.
This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the method's applications to real devices are clearly illustrated. The EGM field has experienced tremendous growth during the 1980s and 1990s. This book places EGM's growth in perspective by reviewing both sides of the field - engineering and physics. Special emphasis is given to chronology and to the relationship between the more recent work and the pioneering work that outlined the method and the field. Entropy Generation Minimization combines the fundamental principles of thermodynamics, heat transfer, and fluid mechanics. EGM applies these principles to the modeling and optimization of real systems and processes that are characterized by finite size and finite time constraints, and are limited by heat and mass transfer and fluid flow irreversibilities. Entropy Generation Minimization provides a straightforward presentation of the principles of the EGM method, and features examples that elucidate concepts and identify recent EGM advances in engineering and physics. Modern advances include the optimization of storage by melting and solidification; heat exchanger design; power from hot-dry-rock deposits; the on & off operation of defrosting refrigerators and power plants with fouled heat exchangers; the production of ice and other solids; the maximization of power output in simple power plant models with heat transfer irreversibilities; the minimization of refrigerator power input in simple models; and the optimal collection and use of solar energy.
In the lifetimes of the authors, the world and especially the United States have received three significant “wake-up calls” on energy production and consumption. The first of these occurred on October 15, 1973 when the Yom Kippur War began with an attack by Syria and Egypt on Israel. The United States and many western countries supported Israel. Because of the western support of Israel, several Arab oil exporting nations imposed an oil embargo on the west. These nations withheld five million barrels of oil per day. Other countries made up about one million barrels of oil per day but the net loss of four million barrels of oil production per day extended through March of 1974. This represented 7% of the free world’s (i. e. , excluding the USSR) oil production. In 1972 the price of crude oil was about $3. 00 per barrel and by the end of 1974 the price of oil had risen by a factor of 4 to over $12. 00. This resulted in one of the worst recessions in the post World War II era. As a result, there was a movement in the United States to become energy independent. At that time the United States imported about one third of its oil (about five million barrels per day). After the embargo was lifted, the world chose to ignore the “wake-up call” and went on with business as usual.
In the lifetimes of the authors, the world and especially the United States have received three significant “wake-up calls” on energy production and consumption. The first of these occurred on October 15, 1973 when the Yom Kippur War began with an attack by Syria and Egypt on Israel. The United States and many western countries supported Israel. Because of the western support of Israel, several Arab oil exporting nations imposed an oil embargo on the west. These nations withheld five million barrels of oil per day. Other countries made up about one million barrels of oil per day but the net loss of four million barrels of oil production per day extended through March of 1974. This represented 7% of the free world’s (i. e. , excluding the USSR) oil production. In 1972 the price of crude oil was about $3. 00 per barrel and by the end of 1974 the price of oil had risen by a factor of 4 to over $12. 00. This resulted in one of the worst recessions in the post World War II era. As a result, there was a movement in the United States to become energy independent. At that time the United States imported about one third of its oil (about five million barrels per day). After the embargo was lifted, the world chose to ignore the “wake-up call” and went on with business as usual.
Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience and others. Here is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, medical acoustics and ocean acoustics. The Springer Handbook of Acoustics reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, e.g. computer recognition and synthesis of speech, physiological acoustics, psychological acoustics, thermoacoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations and two new chapters covering microphone arrays, acoustic metamaterials and acoustic emission. These improvements will make the handbook even more useful as a reference and a guide for researchers and students in every branch of acoustics. Praise for the first edition: "This treatise is a successful attempt to cover in one book the diverse field of acoustics, which ranges from physics to music and from formal mathematics to technological applications. ... It is this reviewer's opinion that a handbook like Rossing's, which covers the whole field of acoustics, serves a real purpose because it not only gives one a chance to see how one's specialty is covered but it also permits one to make a quick survey of other acoustical areas." (Leo Beranek, American Journal of Physics, Vol. 77 (12), December, 2009) "The Springer Handbook of Acoustics falls into that exceptional list. ...every physics department should have a copy available." (John L. Hubisz, The Physics Teacher, Vol. 48, March, 2010) "This handbook is an excellent addition to the acoustics literature. ... The handbook nicely covers both basics and advances in several areas of acoustics. Several chapters provide good mathematical depth, making the handbook useful as a research and technical resource. ...Overall, a very useful educational and research resource. Summing Up: Recommended. Upper-division undergraduates through professionals." (M. G. Prasad, CHOICE, Vol. 45 (5), January, 2008) "This book covers a wide range of topics and the inclusion of musical acoustics, computer and electronic music appeal to me (singer, song-writer, performer and recording studio co-owner). This handbook is probably well suited for an undergraduate-level introduction to an acoustics course. ... The wide range of topics, inclusion of music-related chapters, eye-pleasing presentations and other useful features make this a very good book to have on your shelf." (Tim Casey, International Journal of Acoustics and Vibration, Vol. 13 (1), 2008) "The Springer Handbook of Acoustics comprises 28 chapters written by 33 authors. The Handbook of Acoustics is useful as a source book for anyone who needs or wants to become familiar with the jargon and issues related to a specific subfield of acoustics ... ." (Robert I. Odom, Siam Review, Vol. 50 (3), 2008) The Springer Handbook of Acoustics reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, e.g. computer recognition and synthesis of speech, physiological acoustics, psychological acoustics, thermoacoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. This new edition of the Handbook features over 13 revised and expanded chapters, new illustrations and 3 new chapters covering microphone arrays, acoustic metamaterials and acoustic emission. These improvements will make the handbook even more useful as a reference and a guide for researchers and students in every branch of acoustics.
The second edition of this standard-setting handbook provides and all-encompassing reference for the practicing engineer in industry, government, and academia, with relevant background and up-to-date information on the most important topics of modern mechanical engineering. These topics include modern manufacturing and design, robotics, computer engineering, environmental engineering, economics, patent law, and communication/information systems. The final chapter and appendix provide information regarding physical properties and mathematical and computational methods. New topics include nanotechnology, MEMS, electronic packaging, global climate change, electric and hybrid vehicles, and bioengineering.