Download Free Thermodynamic Modeling And Materials Data Engineering Book in PDF and EPUB Free Download. You can read online Thermodynamic Modeling And Materials Data Engineering and write the review.

J.-P. CALISTE, A. TRUYOL AND J. WESTBROOK The Series, "Data and Knowledge in a Changing World", exemplifies CODATA's primary purpose of collecting, from widely different fields, a wealth of information on efficient exploitation of data for progress in science and technology and making that information available to scientists and engineers. A separate and complementary CODATA Reference Series will present Directories of compiled and evaluated data and Glossaries of data-related terms. The present book "Thermodynamic Modeling and Materials Data Engineering" discusses thermodynamic, structural, systemic and heuristic approaches to the modeling of complex materials behavior in condensed phases, both fluids and solids, in order to evaluate their potential applications. Itwas inspired by the Symposium on "Materials and Structural Properties" held during the 14th International CODATA Conference in Chambery, France. The quality of the contributions to this Symposium motivated us to present" a coherent book of interest to the field. Updated contributions inspired by Symposium discussions and selections from other CODATA workshops concerning material properties data and Computer Aided Design combine to highlight the complexity of material data issues on experimental, theoretical and simulation levels Articles were selected for their pertinence in three areas. Complex data leading to interesting developments and tools such as: • new developments in state equations and their applications, • prediction and validation of physical and energy data by group correlations for pure compounds, • modeling and prediction of mixture properties.
Phase Diagrams and Thermodynamic Modeling of Solutions provides readers with an understanding of thermodynamics and phase equilibria that is required to make full and efficient use of these tools. The book systematically discusses phase diagrams of all types, the thermodynamics behind them, their calculations from thermodynamic databases, and the structural models of solutions used in the development of these databases. Featuring examples from a wide range of systems including metals, salts, ceramics, refractories, and concentrated aqueous solutions, Phase Diagrams and Thermodynamic Modeling of Solutions is a vital resource for researchers and developers in materials science, metallurgy, combustion and energy, corrosion engineering, environmental engineering, geology, glass technology, nuclear engineering, and other fields of inorganic chemical and materials science and engineering. Additionally, experts involved in developing thermodynamic databases will find a comprehensive reference text of current solution models. - Presents a rigorous and complete development of thermodynamics for readers who already have a basic understanding of chemical thermodynamics - Provides an in-depth understanding of phase equilibria - Includes information that can be used as a text for graduate courses on thermodynamics and phase diagrams, or on solution modeling - Covers several types of phase diagrams (paraequilibrium, solidus projections, first-melting projections, Scheil diagrams, enthalpy diagrams), and more
Integrates fundamental concepts with experimental data and practical applications, including worked examples and end-of-chapter problems.
The selection of the most adequate thermodynamic model in a process simulation is an issue that most process engineer has to face sooner or later. This book, conceived as a practical guide, aims at providing adequate answers by analysing the questions to be looked at. The analysis (first chapter) yields three keys that are further discussed in three different chapters. (1) A good understanding of the properties required in the process, and their method of calculation is the first key. The second chapter provides to that end in a synthetic manner the most important equations that are derived from the fundamental principes of thermodynamics. (2) An adequate description of the mixture, which is a combination of models and parameters, is the second key. The third chapter makes the link between components and models, both from a numerical (parameterisation) and physical (molecular interactions) point of view. Finally, (3) a correct view of the phase behaviour and trends in regard of the process conditions is the third key. The fourth chapter illustrates the phase behaviour and makes model recommendations for the most significant industrial systems. A decision tree is provided at the end of this chapter. In the last chapter, the key questions are reviewed for a number of typical processes. This book is intended for process engineers, who are not specialists of thermodynamics but are confronted with this kind of problems and need a reference book, as well as process engineering students who will find an original approach to thermodynamics, complementary of traditional lectures
Advanced Data Analysis and Modeling in Chemical Engineering provides the mathematical foundations of different areas of chemical engineering and describes typical applications. The book presents the key areas of chemical engineering, their mathematical foundations, and corresponding modeling techniques. Modern industrial production is based on solid scientific methods, many of which are part of chemical engineering. To produce new substances or materials, engineers must devise special reactors and procedures, while also observing stringent safety requirements and striving to optimize the efficiency jointly in economic and ecological terms. In chemical engineering, mathematical methods are considered to be driving forces of many innovations in material design and process development. - Presents the main mathematical problems and models of chemical engineering and provides the reader with contemporary methods and tools to solve them - Summarizes in a clear and straightforward way, the contemporary trends in the interaction between mathematics and chemical engineering vital to chemical engineers in their daily work - Includes classical analytical methods, computational methods, and methods of symbolic computation - Covers the latest cutting edge computational methods, like symbolic computational methods
This textbook gives a concise survey of constitutive and structural modeling for high temperature creep, damage, low – cycle fatigue and other inelastic conditions. The book shows the creep and continuum damage mechanics as rapidly developing discipline which interlinks the material science foundations, the constitutive modeling and computer simulation application to analysis and design of simple engineering components. It is addressed to young researchers and scientists working in the field of mechanics of inelastic, time-dependent materials and structures, as well as to PhD students in computational mechanics, material sciences, mechanical and civil engineering.
Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers.
Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.
Using an applications perspective Thermodynamic Models for Industrial Applications provides a unified framework for the development of various thermodynamic models, ranging from the classical models to some of the most advanced ones. Among these are the Cubic Plus Association Equation of State (CPA EoS) and the Perturbed Chain Statistical Association Fluid Theory (PC-SAFT). These two advanced models are already in widespread use in industry and academia, especially within the oil and gas, chemical and polymer industries. Presenting both classical models such as the Cubic Equations of State and more advanced models such as the CPA, this book provides the critical starting point for choosing the most appropriate calculation method for accurate process simulations. Written by two of the developers of these models, Thermodynamic Models for Industrial Applications emphasizes model selection and model development and includes a useful “which model for which application” guide. It also covers industrial requirements as well as discusses the challenges of thermodynamics in the 21st Century.
The 19th CIRP Conference on Life Cycle Engineering continues a strong tradition of scientific meetings in the areas of sustainability and engineering within the community of the International Academy for Production Engineering (CIRP). The focus of the conference is to review and discuss the current developments, technology improvements, and future research directions that will allow engineers to help create green businesses and industries that are both socially responsible and economically successful. The symposium covers a variety of relevant topics within life cycle engineering including Businesses and Organizations, Case Studies, End of Life Management, Life Cycle Design, Machine Tool Technologies for Sustainability, Manufacturing Processes, Manufacturing Systems, Methods and Tools for Sustainability, Social Sustainability, and Supply Chain Management.