Download Free Thermodynamic Data For Mineral Technology Book in PDF and EPUB Free Download. You can read online Thermodynamic Data For Mineral Technology and write the review.

This edition of Thermodynamics is a thoroughly revised, streamlined, and cor rected version of the book of the same title, first published in 1975. It is intended for students, practicing engineers, and specialists in materials sciences, metallur gical engineering, chemical engineering, chemistry, electrochemistry, and related fields. The present edition contains many additional numerical examples and prob lems. Greater emphasis is put on the application of thermodynamics to chemical, materials, and metallurgical problems. The SI system has been used through out the textbook. In addition, a floppy disk for chemical equilibrium calculations is enclosed inside the back cover. It contains the data for the elements, oxides, halides, sulfides, and other inorganic compounds. The subject material presented in chapters III to XIV formed the basis of a thermodynamics course offered by one of the authors (R.G. Reddy) for the last 14 years at the University of Nevada, Reno. The subject matter in this book is based on a minimum number of laws, axioms, and postulates. This procedure avoids unnecessary repetitions, often encountered in books based on historical sequence of development in thermodynamics. For example, the Clapeyron equation, the van't Hoff equation, and the Nernst distribution law all refer to the Gibbs energy changes of relevant processes, and they need not be presented as radically different relationships.
Today large numbers of geoscientists apply thermodynamic theory to solu tions of a variety of problems in earth and planetary sciences. For most problems in chemistry, the application of thermodynamics is direct and rewarding. Geoscientists, however, deal with complex inorganic and organic substances. The complexities in the nature of mineralogical substances arise due to their involved crystal structure and multicomponental character. As a result, thermochemical solutions of many geological-planetological problems should be attempted only with a clear understanding of the crystal-chemical and thermochemical character of each mineral. The subject of physical geochemistry deals with the elucidation and application of physico-chemical principles to geosciences. Thermodynamics of mineral phases and crystalline solutions form an integral part of it. Developments in mineralogic thermody namics in recent years have been very encouraging, but do not easily reach many geoscientists interested mainly in applications. This series is to provide geoscientists and planetary scientists with current information on the develop ments in thermodynamics of mineral systems, and also provide the active researcher in this rapidly developing field with a forum through which he can popularize the important conclusions of his work. In the first several volumes, we plan to publish original contributions (with an abundant supply of back ground material for the uninitiated reader) and thoughtful reviews from a number of researchers on mineralogic thermodynamics, on the application of thermochemistry to planetary phase equilibria (including meteorites), and on kinetics of geochemical reactions.
Thermodynamic treatment of mineral equilibria, a topic central to mineralogical thermodynamics, can be traced back to the tum of the century, when J. H. Van't Hoff and his associates pioneered in applying thermodynamics to the mineral assemblages observed in the Stassfurt salt deposit. Although other renowned researchers joined forces to develop the subject - H. E. Boeke even tried to popularize it by giving an overview of the early developments in his "Grundlagen der physikalisch-chemischen Petrographie", Berlin, 1915 - it remained, on the whole, an esoteric subject for the majority of the contemporary geological community. Seen that way, mineralogical thermodynamics came of age during the last four decades, and evolved very rapidly into a mainstream discipline of geochemistry. It has contributed enormously to our understanding of the phase equilibria of mineral systems, and has helped put mineralogy and petrology on a firm quantitative basis. In the wake of these developments, academic curricula now require the students of geology to take a course in basic thermodynamics, traditionally offered by the departments of chemistry. Building on that foundation, a supplementary course is generally offered to familiarize the students with diverse mineralogical applications of thermo dynamics. This book draws from the author's experience in giving such a course, and has been tailored to cater to those who have had a previous exposure to the basic concepts of chemical thermodynamics.