Download Free Thermal Decomposition And Combustion Of Explosives And Propellants Book in PDF and EPUB Free Download. You can read online Thermal Decomposition And Combustion Of Explosives And Propellants and write the review.

This unique book investigates the synthesis, kinetics, and thermal decomposition properties and processing of energy-producing materials used in propellants, explosives, pyrotechnic, and gas-generating compositions. Thermal Decomposition and Combustion of Explosives and Propellants provides several mechanisms and stages for the thermal decomposition and combustion reactions of most flammable compounds and their mixtures, such asaliphatic and aromatic nitrocompounds, nitramines, nitroesters, organic azides, furazanes, tetrazols, difluoroamines, polynitrous heterocycles, and onium salts. The authors examine the classic problem of the dependence of explosive activity on molecular structure, using applications to predict the stability, compatibility, and the stabilization of explosives and propellant components. They also offer experimental results examining factors such as subsurface decomposition, evaporation, and dispersion of materials, which can be used to control combustion of condensed systems. Providing several approaches to stability, safety, and controlled combustion of flammable substances, Thermal Decomposition and Combustion of Explosives and Propellants is a multi-dimensional resource for graduate students, researchers and professionals interested in chemical kinetics, the combustion and synthesis of high-energy materials, criminal forensics, and the field of explosives, powders, and solid rocket propellants.
This third edition of the classic on the thermochemical aspects of the combustion of propellants and explosives is completely revised and updated and now includes a section on green propellants and offers an up-to-date view of the thermochemical aspects of combustion and corresponding applications. Clearly structured, the first half of the book presents an introduction to pyrodynamics, describing fundamental aspects of the combustion of energetic materials, while the second part highlights applications of energetic materials, such as propellants, explosives and pyrolants, with a focus on the phenomena occurring in rocket motors. Finally, an appendix gives a brief overview of the fundamentals of aerodynamics and heat transfer, which is a prerequisite for the study of pyrodynamics. A detailed reference for readers interested in rocketry or explosives technology.
This second edition of the classic on the thermochemistry of combustion now features five new chapters and updated coverage of significant recent developments in the field. Addressing both experimental as well as theoretical aspects, the book covers the thermochemical and combustion characteristics of all important types of energetic materials, such as explosives, propellants, and the new class of pyrolants, as well as related phenomena. It presents the fundamental bases of the energetics of materials, deflagration and detonation, thermochemical process of decomposition and combustion, plus combustion wave structures. The book also goes on to discuss the combustion mechanisms of various types of energetic materials, propellants, and explosives, based on the heat transfer process in the combustion waves. The burning rate models are also presented as an aid to understanding the rate-controlling steps of combustion processes, thus demonstrating the relationships of burning rate versus pressure and initial temperature. As a major topic new to this edition, new propulsion methods such as duct rockets, ramjets, pulse motors and thrusters are described in detail, while appendices on flow field dynamics and shock wave propagation have been added.
This book represents a collection of lectures presented at the NATO Advanced study Institute(ASI) on "Chemistry & Physics of the Molecular Processes in Energetic Materials", held at Hotel Torre Normanna, Altavilla Milicia, Sicily, Italy, September 3 to 15, 1989. The institute was attended by seventy participants including twenty lecturers, drawn from thirteen countries. The purpose of the institute was to review the major ad vances made in recent years in the theoretical and experi mental aspects of explosives and propellants. In accordance with the format of the NATO ASI, it was arranged to have a relatively small number of speakers to present in depth, re view type lectures emphasizing the basic research aspects of the subject, over a two week period. Most of the speakers gave two lectures, each in excess of one hour with addition al time for discussions. The scope of the meeting was limit ed to molecular and spectroscopic studies since the hydro dynamic aspects of detonation and various performance crite ria of energetic materials are often covered adequately in other international meetings. An attempt was made to have a coherent presentation of various theoretical, computational and spectroscopic approaches to help a better understanding of energetic materials from a molecular point of view. The progress already made in these areas is such that structure property (e. g.
Calorimetry, as a technique for thermal analysis, has a wide range of applications which are not only limited to studying the thermal characterisation (e.g. melting temperature, denaturation temperature and enthalpy change) of small and large drug molecules, but are also extended to characterisation of fuel, metals and oils. Differential Scanning Calorimetry is used to study the thermal behaviours of drug molecules and excipients by measuring the differential heat flow needed to maintain the temperature difference between the sample and reference cells equal to zero upon heating at a controlled programmed rate. Microcalorimetry is used to study the thermal transition and folding of biological macromolecules in dilute solutions. Microcalorimetry is applied in formulation and stabilisation of therapeutic proteins. This book presents research from all over the world on the applications of calorimetry on both solid and liquid states of materials.
In the last decade, there has been an influx in the development of new technologies for deep space exploration. Countries all around the world are investing in resources to create advanced energetic materials and propulsion systems for their aerospace initiatives. Energetic Materials Research, Applications, and New Technologies is an essential reference source of the latest research in aerospace engineering and its application in space exploration. Featuring comprehensive coverage across a range of related topics, such as molecular dynamics, rocket engine models, propellants and explosives, and quantum chemistry calculations, this book is an ideal reference source for academicians, researchers, advanced-level students, and technology developers seeking innovative research in aerospace engineering.
Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defense organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer.
Incorporation of particular components with specialized properties allows one to tailor the end product's properties. For instance, the sensitivity, burning behavior, thermal or mechanical properties or stability of energetic materials can be affected and even controllably varied through incorporation of such ingredients. This book examines particle technologies as applied to energetic materials such as propellants and explosives, thus filling a void in the literature on this subject. Following an introduction covering general features of energetic materials, the first section of this book describes methods of manufacturing particulate energetic materials, including size reduction, crystallization, atomization, particle formation using supercritical fluids and microencapsulation, agglomeration phenomena, special considerations in mixing explosive particles and the production of nanoparticles. The second section discusses the characterization of particulate materials. Techniques and methods such as particle size analysis, morphology elucidation and the determination of chemical and thermal properties are presented. The wettability of powders and rheological behavior of suspensions and solids are also considered. Furthermore, methods of determining the performance of particular energetic materials are described. Each chapter deals with fundamentals and application possibilities of the various methods presented, with particular emphasis on issues applicable to particulate energetic materials. The book is thus equally relevant for chemists, physicists, material scientists, chemical and mechanical engineers and anyone interested or engaged in particle processing and characterization technologies.
Despite significant developments and widespread theoretical and practical interest in the area of Solid-Propellant Nonsteady Combustion for the last fifty years, a comprehensive and authoritative text on the subject has not been available. Theory of Solid-Propellant Nonsteady Combustion fills this gap by summarizing theoretical approaches to the problem within the framework of the Zeldovich-Novozhilov (ZN-) theory. This book contains equations governing unsteady combustion and applies them systematically to a wide range of problems of practical interest. Theory conclusions are validated, as much as possible, against available experimental data. Theory of Solid-Propellant Nonsteady Combustion provides an accurate up-to-date account and perspectives on the subject and is also accompanied by a website hosting solutions to problems in the book.