Download Free Theory Of River Meanders Book in PDF and EPUB Free Download. You can read online Theory Of River Meanders and write the review.

Rivers are important agents of change that shape the Earth's surface and evolve through time in response to fluctuations in climate and other environmental conditions. They are fundamental in landscape development, and essential for water supply, irrigation, and transportation. This book provides a comprehensive overview of the geomorphological processes that shape rivers and that produce change in the form of rivers. It explores how the dynamics of rivers are being affected by anthropogenic change, including climate change, dam construction, and modification of rivers for flood control and land drainage. It discusses how concern about environmental degradation of rivers has led to the emergence of management strategies to restore and naturalize these systems, and how river management techniques work best when coordinated with the natural dynamics of rivers. This textbook provides an excellent resource for students, researchers, and professionals in fluvial geomorphology, hydrology, river science, and environmental policy.
A comprehensive handbook on state-of-the-art DAS technology and applications Distributed Acoustic Sensing (DAS) is a technology that records sound and vibration signals along a fiber optic cable. Its advantages of high resolution, continuous, and real-time measurements mean that DAS systems have been rapidly adopted for a range of applications, including hazard mitigation, energy industries, geohydrology, environmental monitoring, and civil engineering. Distributed Acoustic Sensing in Geophysics: Methods and Applications presents experiences from both industry and academia on using DAS in a range of geophysical applications. Volume highlights include: DAS concepts, principles, and measurements Comprehensive review of the historical development of DAS and related technologies DAS applications in hydrocarbon, geothermal, and mining industries DAS applications in seismology DAS applications in environmental and shallow geophysics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
This monograph discusses the mechanics of Meandering Rivers with the help of the mathematical and modeling tools built up in the previous monograph of the same Authors (monograph 1 of the present series). After introducing the reader to the ubiquitous character of meandering streams, we discuss the hydrodynamics of curved channels with fixed beds and banks. Next, we extend the analysis to account for the mobile character of the bed and show that it gives rise to the alternate sequence of riffles and pools that characterize river meanders. Allowing for the erodible character of the river banks then allows to build up a rational theory of meander formation able to explain most of the features observed in nature: meander growth, migration, skewing, multiple loops, cutoffs and meander belts.
The sinuous form and peculiar evolution of meandering rivers has long captured the imagination of people. Today, meandering rivers exist in some of the most densely populated areas in the World, where they provide environmental and economic wealth and opportunities, as well as posing hazards. Through geological time, the ancestors of these modern meanders built deposits that are now host to mineral resources, groundwater, and hydrocarbons. This Special Publication illustrates the breadth of current research on meandering rivers and their deposits. The collection of research papers demonstrates the state of science on fluvial process–product relationships. The articles cover fundamental and applied studies of both modern and ancient rivers, are based on state-of-the-art technology, include complementary philosophical approaches, and span a wide range of spatial and temporal scales. This book includes some of the most recent advances in the study of the morphodynamics and sedimentology of meandering rivers, and is an important resource for those who want to investigate fluvial systems and their deposits.
The geometry of a meander is that of a random walk whose most frequent form minimizes the sum of the squares of the changes in direction in each unit length. Changes in direction closely approximate a sine function of channel distance. Depth, velocity, and slope are adjusted so as to decrease the variance of shear and the friction factor in a meander over that in an otherwise comparable straight reach of the same river.
This volume presents a description of the river (a natural watercourse, usually freshwater, flowing towards an ocean, a lake, a sea, or another river), including its shape, size, organization, and action, along with a consistent theory that explains much of the observed character of channels.
Completely updated and with three new chapters, this analysis of river dynamics is invaluable for advanced students, researchers and practitioners.