Download Free Theory Of Operator Spaces Book in PDF and EPUB Free Download. You can read online Theory Of Operator Spaces and write the review.

An introduction to the theory of operator spaces, emphasising applications to C*-algebras.
The topic of this book is the theory of state spaces of operator algebras and their geometry. The states are of interest because they determine representations of the algebra, and its algebraic structure is in an intriguing and fascinating fashion encoded in the geometry of the state space. From the beginning the theory of operator algebras was motivated by applications to physics, but recently it has found unexpected new applica tions to various fields of pure mathematics, like foliations and knot theory, and (in the Jordan algebra case) also to Banach manifolds and infinite di mensional holomorphy. This makes it a relevant field of study for readers with diverse backgrounds and interests. Therefore this book is not intended solely for specialists in operator algebras, but also for graduate students and mathematicians in other fields who want to learn the subject. We assume that the reader starts out with only the basic knowledge taught in standard graduate courses in real and complex variables, measure theory and functional analysis. We have given complete proofs of basic results on operator algebras, so that no previous knowledge in this field is needed. For discussion of some topics, more advanced prerequisites are needed. Here we have included all necessary definitions and statements of results, but in some cases proofs are referred to standard texts. In those cases we have tried to give references to material that can be read and understood easily in the context of our book.
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.
Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Since the beginning of the thirties a considerable number of books on func tional analysis has been published. Among the first ones were those by M. H. Stone on Hilbert spaces and by S. Banach on linear operators, both from 1932. The amount of material in the field of functional analysis (in cluding operator theory) has grown to such an extent that it has become impossible now to include all of it in one book. This holds even more for text books. Therefore, authors of textbooks usually restrict themselves to normed spaces (or even to Hilbert space exclusively) and linear operators in these spaces. In more advanced texts Banach algebras and (or) topological vector spaces are sometimes included. It is only rarely, however, that the notion of order (partial order) is explicitly mentioned (even in more advanced exposi tions), although order structures occur in a natural manner in many examples (spaces of real continuous functions or spaces of measurable function~). This situation is somewhat surprising since there exist important and illuminating results for partially ordered vector spaces, in . particular for the case that the space is lattice ordered. Lattice ordered vector spaces are called vector lattices or Riesz spaces. The first results go back to F. Riesz (1929 and 1936), L. Kan torovitch (1935) and H. Freudenthal (1936).
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.