Download Free Theory Of Hypergeometric Functions Book in PDF and EPUB Free Download. You can read online Theory Of Hypergeometric Functions and write the review.

This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.
"In 1813, Gauss first outlined his studies of the hypergeometric series which has been of great significance in the mathematical modelling of physical phenomena. This detailed monograph outlines the fundamental relationships between the hypergeometric function and special functions. In nine comprehensive chapters, Dr. Rao and Dr. Lakshminarayanan present a unified approach to the study of special functions of mathematics using Group theory. The book offers fresh insight into various aspects of special functions and their relationship, utilizing transformations and group theory and their applications. It will lay the foundation for deeper understanding by both experienced researchers and novice students." -- Prové de l'editor.
The theory of partitions, founded by Euler, has led in a natural way to the idea of basic hypergeometric series, also known as Eulerian series. These series were first studied systematically by Heine, but many early results are attributed to Euler, Gauss, and Jacobi. This book provides a simple approach to basic hypergeometric series.
The subject of this book is the higher transcendental function known as the confluent hypergeometric function. In the last two decades this function has taken on an ever increasing significance because of its use in the application of mathematics to physical and technical problems. There is no doubt that this trend will continue until the general theory of confluent hypergeometric functions becomes familiar to the majority of physicists in much the same way as the cylinder functions, which were previously less well known, are now used in many engineering and physical problems. This book is intended to further this development. The important practical significance of the functions which are treated hardly demands an involved discussion since they include, as special cases, a number of simpler special functions which have long been the everyday tool of the physicist. It is sufficient to mention that these include, among others, the logarithmic integral, the integral sine and cosine, the error integral, the Fresnel integral, the cylinder functions and the cylinder function in parabolic cylindrical coordinates. For anyone who puts forth the effort to study the confluent hypergeometric function in more detail there is the inestimable advantage of being able to understand the properties of other functions derivable from it. This gen eral point of view is particularly useful in connection with series ex pansions valid for values of the argument near zero or infinity and in connection with the various integral representations.
This monograph by one of the foremost experts on hypergeometric functions is concerned with the Boyarsky principle, developing a theory which is broad enough to encompass several of the most important hypergeometric functions.
Significant revision of classic reference in special functions.
The classical story - of the hypergeometric functions, the configuration space of 4 points on the projective line, elliptic curves, elliptic modular functions and the theta functions - now evolves, in this book, to the story of hypergeometric funktions in 4 variables, the configuration space of 6 points in the projective plane, K3 surfaces, theta functions in 4 variables. This modern theory has been established by the author and his collaborators in the 1990's; further development to different aspects is expected. It leads the reader to a fascinating 4-dimensional world. The author tells the story casually and visually in a plain language, starting form elementary level such as equivalence relations, the exponential function, ... Undergraduate students should be able to enjoy the text.
The theory of Gröbner bases is a main tool for dealing with rings of differential operators. This book reexamines the concept of Gröbner bases from the point of view of geometric deformations. The algorithmic methods introduced in this book are particularly useful for studying the systems of multidimensional hypergeometric PDE's introduced by Gelfand, Kapranov, and Zelevinsky. A number of original research results are contained in the book, and many open problems are raised for future research in this rapidly growing area of computational mathematics.
This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals.