Download Free Theory Of Approximate Functional Equations Book in PDF and EPUB Free Download. You can read online Theory Of Approximate Functional Equations and write the review.

Presently no other book deals with the stability problem of functional equations in Banach algebras, inner product spaces and amenable groups. Moreover, in most stability theorems for functional equations, the completeness of the target space of the unknown functions contained in the equation is assumed. Recently, the question, whether the stability of a functional equation implies this completeness, has been investigated by several authors. In this book the authors investigate these developments in the theory of approximate functional equations. - A useful text for graduate seminars and of interest to a wide audience including mathematicians and applied researchers - Presents recent developments in the theory of approximate functional equations - Discusses the stability problem of functional equations in Banach algebras, inner product spaces and amenable groups
This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.
This book consists of papers written by outstanding mathematicians. It deals with both theoretical and applied aspects of the mathematical contributions of BANACH, ULAM, and OSTROWSKI, which broaden the horizons of Functional Analysis, Approximation Theory, and Numerical Analysis in accordance with contemporary mathematical standards.
Optimal Control of Differential and Functional Equations presents a mathematical theory of deterministic optimal control, with emphasis on problems involving functional-integral equations and functional restrictions. The book reviews analytical foundations, and discusses deterministic optimal control problems requiring original, approximate, or relaxed solutions. Original solutions involve mathematicians, and approximate solutions concern engineers. Relaxed solutions yield a complete theory that encompasses both existence theorems and necessary conditions. The text also presents general optimal control problems, optimal control of ordinary differential equations, and different types of functional-integral equations. The book discusses control problems defined by equations in Banach spaces, the convex cost functionals, and the weak necessary conditions for an original minimum. The text illustrates a class of ordinary differential problems with examples, and explains some conflicting control problems with relaxed adverse controls, as well as conflicting control problems with hyper-relaxed adverse controls. The book is intended for mature mathematicians, graduate students in analysis, and practitioners of optimal control whose primary interests and training are in science or engineering.
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson–Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl–Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton–Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.
This text covers exponential integrals and sums, 4th power moment, zero-free region, mean value estimates over short intervals, higher power moments, omega results, zeros on the critical line, zero-density estimates, and more. 1985 edition.
The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions. The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution (zero-free regions, number of nontrivial zeros etc). Special attention is given to limit theorems in the sense of the weak convergence of probability measures for the Lerch zeta-function. From limit theorems in the space of analytic functions the universitality and functional independence is derived. In this respect the book continues the research of the first author presented in the monograph Limit Theorems for the Riemann zeta-function. This book will be useful to researchers and graduate students working in analytic and probabilistic number theory, and can also be used as a textbook for postgraduate students.
This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss–Jacobi and Hermite–Hadamard type inequalities, Hilbert-type inequalities, and Ulam’s stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.