Download Free Theory And Practice Of Co2 Utilization In Steelmaking Book in PDF and EPUB Free Download. You can read online Theory And Practice Of Co2 Utilization In Steelmaking and write the review.

This book analyzes the mechanism of the application of CO2 in steelmaking, by looking at the thermodynamics and kinetics of the reactions of CO2 with the elements present in molten steel. This book is the first academic monograph either at home or abroad on the application of CO2 in the steelmaking field. The thermodynamic conditions of the reactions of CO2 with silicon, manganese, phosphorus, chromium, nickel, vanadium, and other elements were calculated and analyzed using the FactSage thermodynamic software, and the selective oxidation law of the above multiple elements by CO2 was also analyzed. In terms of kinetics, the interfacial reaction mechanism of CO2 was analyzed via gas isotope exchange technology, and the O2 transfer process and transfer rate between the CO2, slag, and steel were studied. In terms of materials and energy balance, how to use the high-temperature characteristics of CO2 to control the temperature of the molten pool, improve the reaction conditions of molten iron, reduce the evaporation of molten iron, and reduce the amount of steelmaking dust were introduced. Based on the experimental data, theoretical models of unit operation for the application of CO2 in steelmaking were established, including decarburization, denitrification, dephosphorization, decarburization and chromium retention, vanadium extraction, and carbon preservation, and these theoretical models were applied to the steelmaking production process, which is an important step in going from theory to practice. The above research work has opened up a new solution for energy saving and liquid steel cleaning in the iron and steel production process and represents progress in steelmaking technology. This book is used as a reference book for managers, engineering and technical personnel, and related professional teachers and students of Iron & Steel enterprises, government departments, consulting services and evaluation agencies, colleges, and secondary professional schools.
This book analyzes the mechanism of the application of CO2 in steelmaking, by looking at the thermodynamics and kinetics of the reactions of CO2 with the elements present in molten steel. This book is the first academic monograph either at home or abroad on the application of CO2 in the steelmaking field. The thermodynamic conditions of the reactions of CO2 with silicon, manganese, phosphorus, chromium, nickel, vanadium, and other elements were calculated and analyzed using the FactSage thermodynamic software, and the selective oxidation law of the above multiple elements by CO2 was also analyzed. In terms of kinetics, the interfacial reaction mechanism of CO2 was analyzed via gas isotope exchange technology, and the O2 transfer process and transfer rate between the CO2, slag, and steel were studied. In terms of materials and energy balance, how to use the high-temperature characteristics of CO2 to control the temperature of the molten pool, improve the reaction conditions of molten iron, reduce the evaporation of molten iron, and reduce the amount of steelmaking dust were introduced. Based on the experimental data, theoretical models of unit operation for the application of CO2 in steelmaking were established, including decarburization, denitrification, dephosphorization, decarburization and chromium retention, vanadium extraction, and carbon preservation, and these theoretical models were applied to the steelmaking production process, which is an important step in going from theory to practice. The above research work has opened up a new solution for energy saving and liquid steel cleaning in the iron and steel production process and represents progress in steelmaking technology. This book is used as a reference book for managers, engineering and technical personnel, and related professional teachers and students of Iron & Steel enterprises, government departments, consulting services and evaluation agencies, colleges, and secondary professional schools.
Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Products and Usage considers the applications and usages of syngas for producing different chemical materials such as hydrogen, methanol, ethanol, methane, ammonia, and more. In addition, power generation in fuel cells, or in combination with heat from syngas, as well as iron reduction with economic and environmental challenges for syngas utilization are described in detail. - Introduces syngas characteristics and its properties - Describes various methods and technologies for producing syngas - Discusses syngas production from different roots and feedstocks
Char and Carbon Materials Derived from Biomass: Production, Characterization and Applications provides an overview of biomass char production methods (pyrolysis, hydrothermal carbonization, etc.), along with the characterization techniques typically used (Scanning Electronic Microscopy, X-Ray Fluorescence, Nitrogen adsorption, etc.) In addition, the book includes a discussion of the various properties of biomass chars and their suitable recovery processes, concluding with a demonstration of applications. As biomass can be converted to energy, biofuels and bioproducts via thermochemical conversion processes, such as combustion, pyrolysis and gasification, this book is ideal for professionals in energy production and storage fields, as well as professionals in waste treatment, gas treatment, and more. - Provides a discussion of sources of biomass feedstocks, such as agricultural, woody plants and food processing residue - Discusses the various production processes of biomass chars, including pyrolysis and hydrothermal carbonization - Explores various applications of biomass chars within different industries, including energy and agronomy
This authoritative account covers the entire spectrum from iron ore to finished steel. It begins by tracing the history of iron and steel production, right from the earlier days to today’s world of oxygen steelmaking, electric steelmaking, secondary steelmaking and continuous casting. The physicochemical fundamental concepts of chemical equilibrium, activity-composition relationships, and structure-properties of molten metals are introduced before going into details of transport phenomena, i.e. kinetics, mixing and mass transfer in ironmaking and steelmaking pro-cesses. Particular emphasis is laid on the understanding of the fundamental principles of the processes and their application to the optimisation of actual processes. Modern developments in blast furnaces, including modelling and process control are discussed along with an introduction to the alternative methods of ironmaking. In the area of steelmaking, BOF plant practice including pre-treatment of hot metal, metallurgical features of oxygen steelmaking processes, and their control form part of the book. It also covers basic open hearth, electric arc furnace and stainless steelmaking, before discussing the area of casting of liquid steel—ingot casting, continuous casting and near net shape casting. The book concludes with a chapter on the status of the ironmaking and steelmaking in India. In line with the application of theoretical principles, several worked-out examples dealing with fundamental principles as applied to actual plant situations are presented. The book is primarily intended for undergraduate and postgraduate students of metallurgical engineering. It would also be immensely useful to researchers in the area of iron and steel.
This book describes improvements in the iron and steel making process in the past few decades. It also presents new and improved solutions to producing high quality products with low greenhouse emissions. In addition, it examines legislative regulations regarding greenhouse emissions all around the world and how to control these dangerous emissions in iron and steel making plants.
Contributed articles presented in the International Conference on Advances in the Theory of Ironmaking and Steelmaking; organized by the Dept. of Material Engineering, IISc., Bangalore.
Treatise on Process Metallurgy: Volume Three, Industrial Processes provides academics with the fundamentals of the manufacturing of metallic materials, from raw materials into finished parts or products. In these fully updated volumes, coverage is expanded into four volumes, including Process Fundamentals, encompassing process fundamentals, structure and properties of matter; thermodynamic aspects of process metallurgy, and rate phenomena in process metallurgy; Processing Phenomena, encompassing interfacial phenomena in high temperature metallurgy, metallurgical process phenomena, and metallurgical process technology; Metallurgical Processes, encompassing mineral processing, aqueous processing, electrochemical material and energy processes, and iron and steel technology, non-ferrous process principles and production technologies, and more. The work distills the combined academic experience from the principal editor and the multidisciplinary four-member editorial board. Provides the entire breadth of process metallurgy in a single work Includes in-depth knowledge in all key areas of process metallurgy Approaches the topic from an interdisciplinary perspective, providing broad range coverage on topics
Written in a student-friendly manner, the book begins with the introduction to fuels, furnaces and refractories. It further exposes the reader to the different types of fuels with their testing methods. Besides covering the recent developments in the field of non-recovery coke ovens, dry coke cooling, use of coal in DRI and blast furnace, and new energy recovery system, the book also covers all the aspects of refractory systems. For better understanding of the text, the book includes a large number of illustrations. The book also facilitates a thorough understanding of different environmental issues associated with the use of fuel. Finally, the reader is made familiar with the Indian industrial scenario regarding fuels, furnaces and refractories.