Download Free Theoretical Studies On Sex Ratio Evolution Mpb 22 Volume 22 Book in PDF and EPUB Free Download. You can read online Theoretical Studies On Sex Ratio Evolution Mpb 22 Volume 22 and write the review.

This book deals with a key area of population genetics: the ratio of the sexes in a population, or the allocation of resources to male versus female reproductive function. Samuel Karlin and Sabin Lessard establish the formal theoretical aspects of the evolution of sex ratio within the constraints of genetic mechanisms of sex determination. Their results generalize and unify existing work on the topic, strengthening previous conceptions in some cases and, in other instances, offering new directions of research. There are two main approaches to understanding the causes and effects of sex ratio. One approach focuses on the optimization and adaptive functions of sex allocation, while the other emphasizes the consequences of genetic sex determination mechanisms. In discussing the utility of these two approaches, Professors Karlin and Lessard examine the principal sex-determining mechanisms and facts involved in sex ratio representations, the various genetic and environmental factors that contribute to adaptive sex expression, and the evolution of sex determining systems and controls. From a population genetic perspective, the authors derive evolutionary properties in support of the high incidence of 1:1 sex ratio in natural populations and investigate the conditions that can explain the occurrence of biased sex ratio.
Terminology, conceptual overview, biogeography, modeling.
This volume focuses on the latest methods used to sequence, assemble, and analyze insect genomes. The collection of protocols in this book provides an introduction to the workflows and bioinformatics tools available for researchers. The chapters cover a range of useful topics such as determining genome size by flow cytometry; High Molecular Weight DNA extraction; improvements to a genome assembly provided by long-range sequencing approaches; assessments of orthology and single-copy genes at different phylogenetic levels; detecting regulatory regions with FAIRE, RAMPAGE, and computational analysis of cis-regulatory modules in insects; bioinformatics analysis of epigenetic modifications, high-throughput scanning of insect genomes (TEEseq) for the presence of endosymbionts, and leveraging genome sequence information to design RNAi strategies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Insect Genomics: Methods and Protocols is a valuable resource for graduate students, postdocs, and novice research scientists who are interested in learning more about this developing field.
This book explores ways to drive and increase a brand’s most important property, its equity. Focussing on gender, the author analyses the impact of assigning personalities and characteristics to products and how this can affect the management of brands on a global scale. Using detailed examples, the author argues that brands with low masculine and feminine characteristics have the lowest equity, whilst brands with both high feminine and masculine characteristics are shown to have the strongest equity. Including notions of androgyny in brands, this significant study reveals the different factors which can affect a brand being perceived as either masculine or feminine. Aiming to develop a comprehensive theory and provide practitioners with a guide to increasing the equity of their brands, this controversial and pioneering book lays the foundation for creating a global brand personality model.
The Logic of Chance offers a reappraisal and a new synthesis of theories, concepts, and hypotheses on the key aspects of the evolution of life on earth in light of comparative genomics and systems biology. The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes. "Koonin's account of viral and pre-eukaryotic evolution is undoubtedly up-to-date. His "mega views" of evolution (given what was said above) and his cosmological musings, on the other hand, are interesting reading." Summing Up: Recommended Reprinted with permission from CHOICE, copyright by the American Library Association.
Mathematical and statistical approaches to evolutionary theory are numerous. The NATO Advanced Study Institute (ASI) held at the Universite de Montreal, Montreal, August 3-21, 1987, was an opportunity to review most of the classical approaches and to study the more recent developments. The participation of theoretical biologists and geneticists as well as applied mathematicians and statisticians made possible exchanges of ideas between students and scholars having different views on the subject. These Proceedings contain the lecture notes of seven (7) of the eleven (11) series of lectures that were given. ESS (Evolutionarily Stable Stragety) theory is considered from many perspectives, from a game-theoretic approach to understanding behavior and evolution (W.G.S. Hines), and a systematic classification of properties and patterns of ESS's (C. Cannings) to particular applications of the differential geometry of the Shahshahani metric (E. Akin). Extensions of ESS theory to sexual populations and finite populations, not to mention games between relatives, are presented (W.G.S. Hines). Special attention is given to the classical game called the War of Attrition but with n players and random rewards (C. Cannings). The Shahshahani metric is also used to show the occurrence of cycling in the two-locus, two-allele model (E. Akin). Various inference problems in population genetics are adressed. Procedures to detect and measure selection components and polymorphism (in particular, the Wahlund effect) at one or several loci from mother-offspring combinations in natural populations are discussed at length (F.B. Christiansen).
This book deals with a key area of population genetics: the ratio of the sexes in a population, or the allocation of resources to male versus female reproductive function. Samuel Karlin and Sabin Lessard establish the formal theoretical aspects of the evolution of sex ratio within the constraints of genetic mechanisms of sex determination. Their results generalize and unify existing work on the topic, strengthening previous conceptions in some cases and, in other instances, offering new directions of research. There are two main approaches to understanding the causes and effects of sex ratio. One approach focuses on the optimization and adaptive functions of sex allocation, while the other emphasizes the consequences of genetic sex determination mechanisms. In discussing the utility of these two approaches, Professors Karlin and Lessard examine the principal sex-determining mechanisms and facts involved in sex ratio representations, the various genetic and environmental factors that contribute to adaptive sex expression, and the evolution of sex determining systems and controls. From a population genetic perspective, the authors derive evolutionary properties in support of the high incidence of 1:1 sex ratio in natural populations and investigate the conditions that can explain the occurrence of biased sex ratio.
Sexual reproduction is a fundamental aspect of life. It is defined by the occurrence of meiosis and the fusion of two gametes of different sexes or mating types. Sex-determination mechanisms are responsible for the sexual fate and development of sexual characteristics in an organism, be it a unicellular alga, a plant, or an animal. In many cases, sex determination is genetic: males and females have different alleles or different genes that specify their sexual morphology. In animals, this is often accompanied by chromosomal differences. In other cases, sex may be determined by environmental (e.g. temperature) or social variables (e.g. the size of an organism relative to other members of its population). Surprisingly, sex-determination mechanisms are not evolutionarily conserved but are bewilderingly diverse and appear to have had rapid turnover rates during evolution. Evolutionary biologists continue to seek a solution to this conundrum. What drives the surprising dynamics of such a fundamental process that always leads to the same outcome: two sex types, male and female? The answer is complex but the ongoing genomic revolution has already greatly increased our knowledge of sex-determination systems and sex chromosomes in recent years. This novel book presents and synthesizes our current understanding, and clearly shows that sex-determination evolution will remain a dynamic field of future research. The Evolution of Sex Determination is an advanced, research level text suitable for graduate students and researchers in genetics, developmental biology, and evolution.
The seemingly innocent observation that the activities of organisms bring about changes in environments is so obvious that it seems an unlikely focus for a new line of thinking about evolution. Yet niche construction--as this process of organism-driven environmental modification is known--has hidden complexities. By transforming biotic and abiotic sources of natural selection in external environments, niche construction generates feedback in evolution on a scale hitherto underestimated--and in a manner that transforms the evolutionary dynamic. It also plays a critical role in ecology, supporting ecosystem engineering and influencing the flow of energy and nutrients through ecosystems. Despite this, niche construction has been given short shrift in theoretical biology, in part because it cannot be fully understood within the framework of standard evolutionary theory. Wedding evolution and ecology, this book extends evolutionary theory by formally including niche construction and ecological inheritance as additional evolutionary processes. The authors support their historic move with empirical data, theoretical population genetics, and conceptual models. They also describe new research methods capable of testing the theory. They demonstrate how their theory can resolve long-standing problems in ecology, particularly by advancing the sorely needed synthesis of ecology and evolution, and how it offers an evolutionary basis for the human sciences. Already hailed as a pioneering work by some of the world's most influential biologists, this is a rare, potentially field-changing contribution to the biological sciences.