Download Free Theoretical And Experimental Methods For Defending Against Ddos Attacks Book in PDF and EPUB Free Download. You can read online Theoretical And Experimental Methods For Defending Against Ddos Attacks and write the review.

Denial of Service (DoS) attacks are a form of attack that seeks to make a network resource unavailable due to overloading the resource or machine with an overwhelming number of packets, thereby crashing or severely slowing the performance of the resource. Distributed Denial of Service (DDoS) is a large scale DoS attack which is distributed in the Internet. Every computer which has access to the Internet can behave as an attacker. Typically bandwidth depletion can be categorized as either a flood or an amplification attack. Flood attacks can be done by generating ICMP packets or UDP packets in which it can utilize stationary or random variable ports. Smurf and Fraggle attacks are used for amplification attacks. DDoS Smurf attacks are an example of an amplification attack where the attacker sends packets to a network amplifier with the return address spoofed to the victim's IP address. This book presents new research and methodologies along with a proposed algorithm for prevention of DoS attacks that has been written based on cryptographic concepts such as birthday attacks to estimate the rate of attacks generated and passed along the routers. Consequently, attackers would be identified and prohibited from sending spam traffic to the server which can cause DDoS attacks. Due to the prevalence of DoS attacks, there has been a lot of research conducted on how to detect them and prevent them. The authors of this short format title provide their research results on providing an effective solution to DoS attacks, including introduction of the new algorithm that can be implemented in order to deny DoS attacks. - A comprehensive study on the basics of network security - Provides a wide revision on client puzzle theory - An experimental model to mitigate distributed denial of service (DDoS) attacks
The book puts forward dynamically enabled cyber defense technology as a solution to the system homogenization problem. Based on the hierarchy of the protected information system entity, the book elaborates on current mainstream dynamic defense technologies from four aspects: the internal hardware platform, software service, information data and external network communication. It also ascertains their possible evolution routes, clarifies their relationship with existing security products, and makes macro analyses and discussions on security gain and overall system efficiency of these technologies.This book can be used as both a textbook for graduate courses related to electronic information as well as a reference for scientific researchers engaged in relevant research. It helps graduate students majoring in electronics and information sciences to gain an understanding in dynamically-enabled cyber defense. Scientists and engineers specialising in network security research should also find this book to be a useful guide on recent developments in network security.
Denial of Service (DoS) attacks are a form of attack that seeks to make a network resource unavailable due to overloading the resource or machine with an overwhelming number of packets, thereby crashing or severely slowing the performance of the resource. Distributed Denial of Service (DDoS) is a large scale DoS attack which is distributed in the Internet. Every computer which has access to the Internet can behave as an attacker. Typically bandwidth depletion can be categorized as either a flood or an amplification attack. Flood attacks can be done by generating ICMP packets or UDP packets in which it can utilize stationary or random variable ports. Smurf and Fraggle attacks are used for amplification attacks. DDoS Smurf attacks are an example of an amplification attack where the attacker sends packets to a network amplifier with the return address spoofed to the victim's IP address. This book presents new research and methodologies along with a proposed algorithm for prevention of DoS attacks that has been written based on cryptographic concepts such as birthday attacks to estimate the rate of attacks generated and passed along the routers. Consequently, attackers would be identified and prohibited from sending spam traffic to the server which can cause DDoS attacks. Due to the prevalence of DoS attacks, there has been a lot of research conducted on how to detect them and prevent them. The authors of this short format title provide their research results on providing an effective solution to DoS attacks, including introduction of the new algorithm that can be implemented in order to deny DoS attacks. A comprehensive study on the basics of network security Provides a wide revision on client puzzle theory An experimental model to mitigate distributed denial of service (DDoS) attacks
DDoS Attacks: Evolution, Detection, Prevention, Reaction, and Tolerance discusses the evolution of distributed denial-of-service (DDoS) attacks, how to detect a DDoS attack when one is mounted, how to prevent such attacks from taking place, and how to react when a DDoS attack is in progress, with the goal of tolerating the attack. It introduces typ
The complexity and severity of the Distributed Denial of Service (DDoS) attacks are increasing day-by-day. The Internet has a highly inconsistent structure in terms of resource distribution. Numerous technical solutions are available, but those involving economic aspects have not been given much consideration. The book, DDoS Attacks – Classification, Attacks, Challenges, and Countermeasures, provides an overview of both types of defensive solutions proposed so far, exploring different dimensions that would mitigate the DDoS effectively and show the implications associated with them. Features: Covers topics that describe taxonomies of the DDoS attacks in detail, recent trends and classification of defensive mechanisms on the basis of deployment location, the types of defensive action, and the solutions offering economic incentives. Introduces chapters discussing the various types of DDoS attack associated with different layers of security, an attacker’s motivations, and the importance of incentives and liabilities in any defensive solution. Illustrates the role of fair resource-allocation schemes, separate payment mechanisms for attackers and legitimate users, negotiation models on cost and types of resources, and risk assessments and transfer mechanisms. DDoS Attacks – Classification, Attacks, Challenges, and Countermeasures is designed for the readers who have an interest in the cybersecurity domain, including students and researchers who are exploring different dimensions associated with the DDoS attack, developers and security professionals who are focusing on developing defensive schemes and applications for detecting or mitigating the DDoS attacks, and faculty members across different universities.
Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats was developed by a group of leading researchers. It describes the fundamental challenges facing the research community and identifies new promising solution paths. Moving Target Defense which is motivated by the asymmetric costs borne by cyber defenders takes an advantage afforded to attackers and reverses it to advantage defenders. Moving Target Defense is enabled by technical trends in recent years, including virtualization and workload migration on commodity systems, widespread and redundant network connectivity, instruction set and address space layout randomization, just-in-time compilers, among other techniques. However, many challenging research problems remain to be solved, such as the security of virtualization infrastructures, secure and resilient techniques to move systems within a virtualized environment, automatic diversification techniques, automated ways to dynamically change and manage the configurations of systems and networks, quantification of security improvement, potential degradation and more. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats is designed for advanced -level students and researchers focused on computer science, and as a secondary text book or reference. Professionals working in this field will also find this book valuable.
Distributed Denial of Service (DDoS) attacks have become more destructive, wide-spread and harder to control over time. This book allows students to understand how these attacks are constructed, the security flaws they leverage, why they are effective, how they can be detected, and how they can be mitigated. Students use software defined networking (SDN) technology to created and execute controlled DDoS experiments. They learn how to deploy networks, analyze network performance, and create resilient systems. This book is used for graduate level computer engineering instruction at Clemson University. It augments the traditional graduate computing curricula by integrating: Internet deployment, network security, ethics, contemporary social issues, and engineering principles into a laboratory based course of instruction. Unique features of this book include: A history of DDoS attacks that includes attacker motivations Discussion of cyber-war, censorship, and Internet black-outs SDN based DDoS laboratory assignments Up-to-date review of current DDoS attack techniques and tools Review of the current laws that globally relate to DDoS Abuse of DNS, NTP, BGP and other parts of the global Internet infrastructure to attack networks Mathematics of Internet traffic measurement Game theory for DDoS resilience Construction of content distribution systems that absorb DDoS attacks This book assumes familiarity with computing, Internet design, appropriate background in mathematics, and some programming skills. It provides analysis and reference material for networking engineers and researchers. By increasing student knowledge in security, and networking; it adds breadth and depth to advanced computing curricula.
This book presents revised selected papers from the 15th International Forum on Digital TV and Multimedia Communication, IFTC 2018, held in Shanghai, China, in September 2018. The 39 full papers presented in this volume were carefully reviewed and selected from 130 submissions. They were organized in topical sections on image processing; machine learning; quality assessment; telecommunications; video coding; video surveillance; virtual reality.
This book gathers selected papers presented at International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS 2023), organized by School of Computer Science and Engineering, REVA University, Bengaluru, India, during June 21–22, 2023. The book covers state-of-the-art research insights on Internet of things (IoT) paradigm to access, manage, and control the objects/things/people working under various information systems and deployed under wide range of applications like smart cities, healthcare, industries, and smart homes.
This book provides an effective overview of the state-of-the art in software engineering, with a projection of the future of the discipline. It includes 13 papers, written by leading researchers in the respective fields, on important topics like model-driven software development, programming language design, microservices, software reliability, model checking and simulation. The papers are edited and extended versions of the presentations at the PAUSE symposium, which marked the completion of 14 years of work at the Chair of Software Engineering at ETH Zurich. In this inspiring context, some of the greatest minds in the field extensively discussed the past, present and future of software engineering. It guides readers on a voyage of discovery through the discipline of software engineering today, offering unique food for thought for researchers and professionals, and inspiring future research and development.