Download Free The Work Of Raymond J Carroll Book in PDF and EPUB Free Download. You can read online The Work Of Raymond J Carroll and write the review.

This volume contains Raymond J. Carroll's research and commentary on its impact by leading statisticians. Each of the seven main parts focuses on a key research area: Measurement Error, Transformation and Weighting, Epidemiology, Nonparametric and Semiparametric Regression for Independent Data, Nonparametric and Semiparametric Regression for Dependent Data, Robustness, and other work. The seven subject areas reviewed in this book were chosen by Ray himself, as were the articles representing each area. The commentaries not only review Ray’s work, but are also filled with history and anecdotes. Raymond J. Carroll’s impact on statistics and numerous other fields of science is far-reaching. His vast catalog of work spans from fundamental contributions to statistical theory to innovative methodological development and new insights in disciplinary science. From the outset of his career, rather than taking the “safe” route of pursuing incremental advances, Ray has focused on tackling the most important challenges. In doing so, it is fair to say that he has defined a host of statistics areas, including weighting and transformation in regression, measurement error modeling, quantitative methods for nutritional epidemiology and non- and semiparametric regression.
Measurement error arises ubiquitously in applications and has been of long-standing concern in a variety of fields, including medical research, epidemiological studies, economics, environmental studies, and survey research. While several research monographs are available to summarize methods and strategies of handling different measurement error problems, research in this area continues to attract extensive attention. The Handbook of Measurement Error Models provides overviews of various topics on measurement error problems. It collects carefully edited chapters concerning issues of measurement error and evolving statistical methods, with a good balance of methodology and applications. It is prepared for readers who wish to start research and gain insights into challenges, methods, and applications related to error-prone data. It also serves as a reference text on statistical methods and applications pertinent to measurement error models, for researchers and data analysts alike. Features: Provides an account of past development and modern advancement concerning measurement error problems Highlights the challenges induced by error-contaminated data Introduces off-the-shelf methods for mitigating deleterious impacts of measurement error Describes state-of-the-art strategies for conducting in-depth research
This second edition of Applied Multivariate Statistical Concepts covers the classic and cutting-edge multivariate techniques used in today’s research. Through clear writing and engaging pedagogy and examples using real data, Hahs-Vaughn walks students through the most used methods to learn why and how to apply each technique. A conceptual approach with a higher than usual text-to-formula ratio helps readers master key concepts so they can implement and interpret results generated by today’s sophisticated software. Additional features include examples using real data from the social sciences; templates for writing research questions and results that provide manuscript-ready models; step-by-step instructions on using R and SPSS statistical software with screenshots and annotated output; clear coverage of assumptions, including how to test them and the effects of their violation; and conceptual, computational, and interpretative example problems that mirror the real-world problems students encounter in their studies and careers. This edition features expanded coverage of topics, such as propensity score analysis, path analysis and confirmatory factor analysis, and centering, moderation effects, and power as related to multilevel modelling. New topics are introduced, such as addressing missing data and latent class analysis, while each chapter features an introduction to using R statistical software. This textbook is ideal for courses on multivariate statistics/analysis/design, advanced statistics, and quantitative techniques, as well as for graduate students broadly in social sciences, education, and behavioral sciences. It also appeals to researchers with no training in multivariate methods.
This volume contains a selection of papers presented at the Second Seattle Symposium in Biostatistics: Analysis of Correlated Data. The symposium was held in 2000 to celebrate the 30th anniversary of the University of Washington School of Public Health and Community Medicine. It featured keynote lectures by Norman Breslow, David Cox and Ross Prentice and 16 invited presentations by other prominent researchers. The papers contained in this volume encompass recent methodological advances in several important areas, such as longitudinal data, multivariate failure time data and genetic data, as well as innovative applications of the existing theory and methods. This volume is a valuable reference for researchers and practitioners in the field of correlated data analysis.
Includes maps of the U.S. Congressional districts.
Includes pubseries: State and metropolitan area employment and unemployment; State and local government collective bargaining settlements; Major collective bargaining settlements in private industry; Consumer price index.
Nutrients have been recognized as essential for maximum growth, successful reproduction, and infection prevention since the 1940s; since that time, the lion's share of nutrient research has focused on defining their role in these processes. Around 1990, however, a major shift began in the way that researchers viewed some nutrients particularly the vitamins. This shift was motivated by the discovery that modest declines in vitamin nutritional status are associated with an increased risk of ill-health and disease (such as neural tube defects, heart disease, and cancer), especially in those populations or individuals who are genetically predisposed. In an effort to expand upon this new understanding of nutrient action, nutritionists are increasingly turning their focus to the mathematical modeling of nutrient kinetic data. The availability of suitably-tagged (isotope) nutrients (such as B-carotene, vitamin A, folate, among others), sensitive analytical methods to trace them in humans (mass spectrometry and accelerator mass spectrometry), and powerful software (capable of solving and manipulating differential equations efficiently and accurately), has allowed researchers to construct mathematical models aimed at characterizing the dynamic and kinetic behavior of key nutrients in vivo in humans at an unparalleled level of detail.
This book describes an interactive statistical computing environment called 1 XploRe. As the name suggests, support for exploratory statistical analysis is given by a variety of computational tools. XploRe is a matrix-oriented statistical language with a comprehensive set of basic statistical operations that provides highly interactive graphics, as well as a programming environ ment for user-written macros; it offers hard-wired smoothing procedures for effective high-dimensional data analysis. Its highly dynamic graphic capa bilities make it possible to construct student-level front ends for teaching basic elements of statistics. Hot keys make it an easy-to-use computing environment for statistical analysis. The primary objective of this book is to show how the XploRe system can be used as an effective computing environment for a large number of statistical tasks. The computing tasks we consider range from basic data matrix manipulations to interactive customizing of graphs and dynamic fit ting of high-dimensional statistical models. The XploRe language is similar to other statistical languages and offers an interactive help system that can be extended to user-written algorithms. The language is intuitive and read ers with access to other systems can, without major difficulty, reproduce the examples presented here and use them as a basis for further investigation.