Download Free The Vibrational Spectroscopy Of Polymers Book in PDF and EPUB Free Download. You can read online The Vibrational Spectroscopy Of Polymers and write the review.

Describes the theory and practice of infrared and Raman spectroscopy as applied to the study of the physical and chemical characteristics of polymers. Its purpose is to give the beginning researcher in the field a firm foundation and a starting point for the study of more advanced literature. To this end the book concentrates on the fundamentals of the theory and nomenclature, and on the discussion of well-documented illustrations of these fundamental principles, including many now-classic studies in the subject. No previous knowledge of either polymers or vibrational spectroscopy is assumed.
Used primarily for characterizing polymers and biological systems, vibrational spectroscopy continues to uncover structural information pertinent to a growing number of applications. Vibrational Spectroscopy of Biological and Polymeric Materials compiles the latest developments in advanced infrared and Raman spectroscopic techniques that are
In this book, measurements using vibrational spectroscopy techniques for both the chemical and physical characteristics of polymers are described, alongside chapters covering spectra-structure correlations and spectra calculation. Special chapters deal with composites and conducting polymers, while others discuss the role of vibrational spectroscopy in understanding polymer weathering and degradation, and determining the optical, dielectric and solar and thermal properties of polymers. Dichroism measurement methods, important in understanding product performance, are covered, as well as practical methods for determining molecular orientation; linear, biaxial and trichroic determinations for polymers, as are dynamic measurement systems.
An insightful exploration of cutting-edge spectroscopic techniques in polymer characterization In Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications, a team of distinguished chemists delivers a comprehensive exploration of the vast potential of spectroscopic characterization techniques in polymer research. The book offers a concise outline of the principles, advantages, instrumentation, experimental techniques, and noteworthy applications of cutting-edge spectroscopy. Covering a wide range of polymers, from nylon to complex polymeric nanocomposites, the author presents recent developments in polymer science to polymer, analytical, and material chemists, assisting them in keeping track of the progress in modern spectroscopy. Spectroscopic Techniques for Polymer Characterization contains contributions from pioneers in modern spectroscopic techniques from around the world. The included materials bridge the gap between spectroscopists, polymer scientists, and engineers in academia and industry. The book also offers: A thorough introduction to the progress in spectroscopic techniques, including polymer spectroscopy and near-infrared spectroscopy Comprehensive explorations of topical polymers studied by spectroscopy, including polymer thin films, fluoropolymers, polymer solutions, conductive polymers Practical discussions of infrared imaging, near-infrared imaging, two-dimensional correlation spectroscopy, and far-ultraviolet spectroscopy In-depth examinations of spectroscopic studies of weak hydrogen bonding in polymers Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications is a must-read reference for polymer, analytical, and physical chemists, as well as materials scientists and spectroscopists seeking a one-stop resource for polymer characterization using spectroscopic analyses.
This revised and updated Second Edition of the best-selling reference/text is essential reading for students and scientists who seek a thorough and practical introduction to the field of polymer spectroscopy. Eleven chapters cover the fundamental aspects and experimental applications of the primary spectroscopic methods. The advantages and disadvantages of the various techniques for particular polymer systems are also discussed. The goal of the author is not to make the reader an expert in the field, but rather to provide enough information about the different spectroscopic methods that the reader can determine how the available techniques can be used to solve a particular polymer problem. This Second Edition contains new and updated information on techniques in IR and NMR, as well as an all-new chapter on Mass Spectrometry.
A collection of infrared and Raman spectra of 500 natural and synthetic polymers of industrial importance is presented in this book. A large variety of compounds are included, starting with linear polyolefins and finishing with complex biopolymers and related compounds. The spectra were registered using Infrared Fourier Transform Spectrometers in the laboratory of the All-Russia Institute of Forensic Sciences. The IR and Raman spectra are presented together on the same sheet. The accompanying data include general and structure formulae, CAS register numbers, and sample preparation conditions.Features of this book:• Continues the long tradition of publishing specific and standard data of new chemical compounds.• For low-molecular weight substances, complementary IR and Raman spectra are featured on the same sample and printed on the same page. This "fingerprint" data allows the substance of the sample to be identified without doubt.• An important feature of this unique collection of data is the increase in the identification precision of unknown substances.• Peak tables are available in digital (ASCII) format, on a diskette delivered with the book. This allows the user to search for unknowns.• All the spectra in the collection are base-line corrected.This book will be of interest to scientists involved in the synthesis of new polymeric materials, polymer identification, and quality control. Libraries of scientific institutes, research centers, and universities involved in vibrational spectroscopy will also find this collection invaluable.
Inelastic neutron scattering (INS) is a spectroscopic technique in which neutrons are used to probe the dynamics of atoms and molecules in solids and liquids. This book is the first, since the late 1960s, to cover the principles and applications of INS as a vibrational-spectroscopic technique. It provides a hands-on account of the use of INS, concentrating on how neutron vibrational spectroscopy can be employed to obtain chemical information on a range of materials that are of interest to chemists, biologists, materials scientists, surface scientists and catalyst researchers. This is an accessible and comprehensive single-volume primary text and reference source.
The first book on the topic, and written by the founder of the technique, this comprehensive resource provides a detailed overview of sum-frequency spectroscopy, its fundamental principles, and the wide range of applications for surfaces, interfaces, and bulk. Beginning with an overview of the historical context, and introductions to the basic theory of nonlinear optics and surface sum-frequency generation, topics covered include discussion of different experimental arrangements adopted by researchers, notes on proper data analysis, an up-to-date survey commenting on the wide range of successful applications of the tool, and a valuable insight into current unsolved problems and potential areas to be explored in the future. With the addition of chapter appendices that offer the opportunity for more in-depth theoretical discussion, this is an essential resource that integrates all aspects of the subject and is ideal for anyone using, or interested in using, sum-frequency spectroscopy.
My heart sank when I was approached by Dr Hastings and by Professor Briggs (Senior Editor of Materials Science and Technology and Series Editor of Polymer Science and Technology Series at Chapman & Hall, respectively) to edit a book with the provisional title Handbook of Poly propylene. My reluctance was due to the fact that my former book [1] along with that of Moore [2], issued in the meantime, seemed to cover the information demand on polypropylene and related systems. Encour aged, however, by some colleagues (the new generation of scientists and engineers needs a good reference book with easy information retrieval, and the development with metallocene catalysts deserves a new update!), I started on this venture. Having some experience with polypropylene systems and being aware of the current literature, it was easy to settle the titles for the book chapters and also to select and approach the most suitable potential contributors. Fortunately, many of my first-choice authors accepted the invitation to contribute. Like all editors of multi-author volumes, I recognize that obtaining contributors follows an S-type curve of asymptotic saturation when the number of willing contributors is plotted as a function of time. The saturation point is, however, never reached and as a consequence, Dear Reader, you will also find some topics of some relevance which are not explicitly treated in this book (but, believe me, I have considered them).
This book contains the proceedings of the Symposium on FT-IR Characterization of Polymers, which was held under the auspices of the Division of Polymer Chemistry, American Chemical Society (ACS) during the annual ACS meeting in Philadelphia, August, 1984. The content of each paper has been substantially extended from the papers presented during the conference. Due to the accidental, irrecoverable loss of the entire contents of the book by the computer system used for editorial purposes, the publication of this book has been delayed more than one year over the initial scheduled date. It has been a continuous, frustrating experience for the editor as well as for the authors. An extended Murphy's law, -anything can go wrong goes multiply wrong- has been demonstrated in editor's office. It necessitated, otherwise unnecessary, repeated proof reading during which time the editor had valuable experience ~n familiarizing himself with each paper much more than usual. The papers in this book are state-of-the-art even after such a delay. It is the authors pride and integrity toward the quality of each paper that makes the value of this book long lasting, while responsibility of the loss of any timeliness rests at the editor's hand. For the purpose of official records, submission and acceptance dates must be stated. All papers had been submitted by September, 1984, and had been accepted for publication by November, 1984, after the critical review processes.