Download Free The Valuative Tree Book in PDF and EPUB Free Download. You can read online The Valuative Tree and write the review.

This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.
This volume is devoted to a beautiful object, called the valuative tree and designed as a powerful tool for the study of singularities in two complex dimensions. Its intricate yet manageable structure can be analyzed by both algebraic and geometric means. Many types of singularities, including those of curves, ideals, and plurisubharmonic functions, can be encoded in terms of positive measures on the valuative tree. The construction of these measures uses a natural tree Laplace operator of independent interest.
This thesis deals with specific features of the theory of holomorphic dynamics in dimension 2 and then sets out to study analogous questions in higher dimensions, e.g. dealing with normal forms for rigid germs, and examples of Kato 3-folds. The local dynamics of holomorphic maps around critical points is still not completely understood, in dimension 2 or higher, due to the richness of the geometry of the critical set for all iterates. In dimension 2, the study of the dynamics induced on a suitable functional space (the valuative tree) allows a classification of such maps up to birational conjugacy, reducing the problem to the special class of rigid germs, where the geometry of the critical set is simple. In some cases, from such dynamical data one can construct special compact complex surfaces, called Kato surfaces, related to some conjectures in complex geometry.
We present an introduction to Berkovich’s theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to étale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Rémy, A. Thuillier and A. Werner provide an overview of their work on the compactification of Bruhat-Tits buildings using Berkovich analytic geometry. The third and final part explores the relationship between non-archimedean geometry and dynamics. A contribution by M. Jonsson contains a thorough discussion of non-archimedean dynamical systems in dimension 1 and 2. Finally a survey by J.-P. Otal gives an account of Morgan-Shalen's theory of compactification of character varieties. This book will provide the reader with enough material on the basic concepts and constructions related to Berkovich spaces to move on to more advanced research articles on the subject. We also hope that the applications presented here will inspire the reader to discover new settings where these beautiful and intricate objects might arise.
This volume has been curated from two sources: presentations from the Conference on Rings and Polynomials, Technische Universität Graz, Graz, Austria, July 19 –24, 2021, and papers intended for presentation at the Fourth International Meeting on Integer-valued Polynomials and Related Topics, CIRM, Luminy, France, which was cancelled due to the pandemic. The collection ranges widely over the algebraic, number theoretic and topological aspects of rings, algebras and polynomials. Two areas of particular note are topological methods in ring theory, and integer valued polynomials. The book is dedicated to the memory of Paul-Jean Cahen, a coauthor or research collaborator with some of the conference participants and a friend to many of the others. This collection contains a memorial article about Paul-Jean Cahen, written by his longtime research collaborator and coauthor Jean-Luc Chabert.
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
This book presents a broad overview of the important recent progress which led to the emergence of new ideas in Lipschitz geometry and singularities, and started to build bridges to several major areas of singularity theory. Providing all the necessary background in a series of introductory lectures, it also contains Pham and Teissier's previously unpublished pioneering work on the Lipschitz classification of germs of plane complex algebraic curves. While a real or complex algebraic variety is topologically locally conical, it is in general not metrically conical; there are parts of its link with non-trivial topology which shrink faster than linearly when approaching the special point. The essence of the Lipschitz geometry of singularities is captured by the problem of building classifications of the germs up to local bi-Lipschitz homeomorphism. The Lipschitz geometry of a singular space germ is then its equivalence class in this category. The book is aimed at graduate students and researchers from other fields of geometry who are interested in studying the multiple open questions offered by this new subject.
The main focus of this volume is on the problem of describing the automorphism groups of affine and projective varieties, a classical subject in algebraic geometry where, in both cases, the automorphism group is often infinite dimensional. The collection covers a wide range of topics and is intended for researchers in the fields of classical algebraic geometry and birational geometry (Cremona groups) as well as affine geometry with an emphasis on algebraic group actions and automorphism groups. It presents original research and surveys and provides a valuable overview of the current state of the art in these topics. Bringing together specialists from projective, birational algebraic geometry and affine and complex algebraic geometry, including Mori theory and algebraic group actions, this book is the result of ensuing talks and discussions from the conference “Groups of Automorphisms in Birational and Affine Geometry” held in October 2012, at the CIRM, Levico Terme, Italy. The talks at the conference highlighted the close connections between the above-mentioned areas and promoted the exchange of knowledge and methods from adjacent fields.
Random trees and tree-valued stochastic processes are of particular importance in many fields. Using the framework of abstract "tree-like" metric spaces and ideas from metric geometry, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behavior of such objects when the number of vertices goes to infinity. This publication surveys the relevant mathematical background and present some selected applications of the theory.
This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.