Download Free The Use Of Population Data In Federal Assistance Programs Book in PDF and EPUB Free Download. You can read online The Use Of Population Data In Federal Assistance Programs and write the review.

Federal government statistics provide critical information to the country and serve a key role in a democracy. For decades, sample surveys with instruments carefully designed for particular data needs have been one of the primary methods for collecting data for federal statistics. However, the costs of conducting such surveys have been increasing while response rates have been declining, and many surveys are not able to fulfill growing demands for more timely information and for more detailed information at state and local levels. Innovations in Federal Statistics examines the opportunities and risks of using government administrative and private sector data sources to foster a paradigm shift in federal statistical programs that would combine diverse data sources in a secure manner to enhance federal statistics. This first publication of a two-part series discusses the challenges faced by the federal statistical system and the foundational elements needed for a new paradigm.
Examines the different populations and settings that can make surveys hard to conduct and discusses methods to meet these challenges.
This open access book describes the differences in US census coverage, also referred to as “differential undercount”, by showing which groups have the highest net undercounts and which groups have the greatest undercount differentials, and discusses why such undercounts occur. In addition to focusing on measuring census coverage for several demographic characteristics, including age, gender, race, Hispanic origin status, and tenure, it also considers several of the main hard-to-count populations, such as immigrants, the homeless, the LBGT community, children in foster care, and the disabled. However, given the dearth of accurate undercount data for these groups, they are covered less comprehensively than those demographic groups for which there is reliable undercount data from the Census Bureau. This book is of interest to demographers, statisticians, survey methodologists, and all those interested in census coverage.
In 2011 the World Bank—with funding from the Bill and Melinda Gates Foundation—launched the Global Findex database, the world's most comprehensive data set on how adults save, borrow, make payments, and manage risk. Drawing on survey data collected in collaboration with Gallup, Inc., the Global Findex database covers more than 140 economies around the world. The initial survey round was followed by a second one in 2014 and by a third in 2017. Compiled using nationally representative surveys of more than 150,000 adults age 15 and above in over 140 economies, The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution includes updated indicators on access to and use of formal and informal financial services. It has additional data on the use of financial technology (or fintech), including the use of mobile phones and the Internet to conduct financial transactions. The data reveal opportunities to expand access to financial services among people who do not have an account—the unbanked—as well as to promote greater use of digital financial services among those who do have an account. The Global Findex database has become a mainstay of global efforts to promote financial inclusion. In addition to being widely cited by scholars and development practitioners, Global Findex data are used to track progress toward the World Bank goal of Universal Financial Access by 2020 and the United Nations Sustainable Development Goals. The database, the full text of the report, and the underlying country-level data for all figures—along with the questionnaire, the survey methodology, and other relevant materials—are available at www.worldbank.org/globalfindex.
The goal of eliminating disparities in health care in the United States remains elusive. Even as quality improves on specific measures, disparities often persist. Addressing these disparities must begin with the fundamental step of bringing the nature of the disparities and the groups at risk for those disparities to light by collecting health care quality information stratified by race, ethnicity and language data. Then attention can be focused on where interventions might be best applied, and on planning and evaluating those efforts to inform the development of policy and the application of resources. A lack of standardization of categories for race, ethnicity, and language data has been suggested as one obstacle to achieving more widespread collection and utilization of these data. Race, Ethnicity, and Language Data identifies current models for collecting and coding race, ethnicity, and language data; reviews challenges involved in obtaining these data, and makes recommendations for a nationally standardized approach for use in health care quality improvement.