Download Free The Unity Of Mathematics Book in PDF and EPUB Free Download. You can read online The Unity Of Mathematics and write the review.

Combinatorics, or the art and science of counting, is a vibrant and active area of pure mathematical research with many applications. The Unity of Combinatorics succeeds in showing that the many facets of combinatorics are not merely isolated instances of clever tricks but that they have numerous connections and threads weaving them together to form a beautifully patterned tapestry of ideas. Topics include combinatorial designs, combinatorial games, matroids, difference sets, Fibonacci numbers, finite geometries, Pascal's triangle, Penrose tilings, error-correcting codes, and many others. Anyone with an interest in mathematics, professional or recreational, will be sure to find this book both enlightening and enjoyable. Few mathematicians have been as active in this area as Richard Guy, now in his eighth decade of mathematical productivity. Guy is the author of over 300 papers and twelve books in geometry, number theory, graph theory, and combinatorics. In addition to being a life-long number-theorist and combinatorialist, Guy's co-author, Ezra Brown, is a multi-award-winning expository writer. Together, Guy and Brown have produced a book that, in the spirit of the founding words of the Carus book series, is accessible “not only to mathematicians but to scientific workers and others with a modest mathematical background.”
Use Unity-based examples to understand fundamental mathematical concepts and see how they are applied when building modern video game functionality. You will gain the theoretical foundation you need, and you will know how to examine and modify an implementation. This book covers points in a 3D Cartesian coordinate system, and then discusses vectors and the details of dot and cross products. Basic mathematical foundations are illustrated through Unity-based example implementations. Also provided are examples showing how the concepts are applied when implementing video game functionality, such as collision support, motion simulations, autonomous behaviors, shadow approximations, and reflection off arbitrary walls. Throughout this book, you learn and examine the concepts and their applications in a game engine. What You Will Learn Understand the basic concepts of points and vectors and their applications in game developmentApply mathematical concepts to modern video game functionality, such as spherical and box collidersImplement autonomous behaviors, including following way points, facing a target, chasing an object, etc. Who This Book is For Beginners, and those interested in the implementation of interactive games, who need a basic mathematical background or a refresher with modern examples
Tribute to the vision and legacy of Israel Moiseevich Gel'fand Written by leading mathematicians, these invited papers reflect the unity of mathematics as a whole, with particular emphasis on the many connections among the fields of geometry, physics, and representation theory Topics include conformal field theory, K-theory, noncommutative geometry, gauge theory, representations of infinite-dimensional Lie algebras, and various aspects of the Langlands program
This easy-to-read 2010 book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, the mathematics of polyhedra, combinatorial geometry, and group theory. Using a systematic paper-folding procedure it is possible to construct a regular polygon with any number of sides. This remarkable algorithm has led to interesting proofs of certain results in number theory, has been used to answer combinatorial questions involving partitions of space, and has enabled the authors to obtain the formula for the volume of a regular tetrahedron in around three steps, using nothing more complicated than basic arithmetic and the most elementary plane geometry. All of these ideas, and more, reveal the beauty of mathematics and the interconnectedness of its various branches. Detailed instructions, including clear illustrations, enable the reader to gain hands-on experience constructing these models and to discover for themselves the patterns and relationships they unearth.
From atom bombs to rebounding slinkies, open your eyes to the mathematical magic in the everyday. Mathematics isn't just for academics and scientists, a fact meteorologist and blogger Peter Lynch has spent the past several years proving through his Irish Times newspaper column and blog, That's Maths.Here, he shows how maths is all around us, with chapters on the beautiful equations behind designing a good concert venue, predicting the stock market and modelling the atom bomb, as well as playful meditations on everything from coin-stacking to cartography. If you left school thinking maths was boring, think again!
The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.
Mahler measure, a height function for polynomials, is the central theme of this book. It has many interesting properties, obtained by algebraic, analytic and combinatorial methods. It is the subject of several longstanding unsolved questions, such as Lehmer’s Problem (1933) and Boyd’s Conjecture (1981). This book contains a wide range of results on Mahler measure. Some of the results are very recent, such as Dimitrov’s proof of the Schinzel–Zassenhaus Conjecture. Other known results are included with new, streamlined proofs. Robinson’s Conjectures (1965) for cyclotomic integers, and their associated Cassels height function, are also discussed, for the first time in a book. One way to study algebraic integers is to associate them with combinatorial objects, such as integer matrices. In some of these combinatorial settings the analogues of several notorious open problems have been solved, and the book sets out this recent work. Many Mahler measure results are proved for restricted sets of polynomials, such as for totally real polynomials, and reciprocal polynomials of integer symmetric as well as symmetrizable matrices. For reference, the book includes appendices providing necessary background from algebraic number theory, graph theory, and other prerequisites, along with tables of one- and two-variable integer polynomials with small Mahler measure. All theorems are well motivated and presented in an accessible way. Numerous exercises at various levels are given, including some for computer programming. A wide range of stimulating open problems is also included. At the end of each chapter there is a glossary of newly introduced concepts and definitions. Around the Unit Circle is written in a friendly, lucid, enjoyable style, without sacrificing mathematical rigour. It is intended for lecture courses at the graduate level, and will also be a valuable reference for researchers interested in Mahler measure. Essentially self-contained, this textbook should also be accessible to well-prepared upper-level undergraduates.
In a surprising sequence of developments, the longest increasing subsequence problem, originally mentioned as merely a curious example in a 1961 paper, has proven to have deep connections to many seemingly unrelated branches of mathematics, such as random permutations, random matrices, Young tableaux, and the corner growth model. The detailed and playful study of these connections makes this book suitable as a starting point for a wider exploration of elegant mathematical ideas that are of interest to every mathematician and to many computer scientists, physicists and statisticians. The specific topics covered are the Vershik-Kerov-Logan-Shepp limit shape theorem, the Baik-Deift-Johansson theorem, the Tracy-Widom distribution, and the corner growth process. This exciting body of work, encompassing important advances in probability and combinatorics over the last forty years, is made accessible to a general graduate-level audience for the first time in a highly polished presentation.
Fascinating study of the origin and nature of mathematical thought, including relation of mathematics and science, 20th-century developments, impact of computers, and more.Includes 34 illustrations. 1968 edition."
Bestselling author and astrophysicist Mario Livio examines the lives and theories of history’s greatest mathematicians to ask how—if mathematics is an abstract construction of the human mind—it can so perfectly explain the physical world. Nobel Laureate Eugene Wigner once wondered about “the unreasonable effectiveness of mathematics” in the formulation of the laws of nature. Is God a Mathematician? investigates why mathematics is as powerful as it is. From ancient times to the present, scientists and philosophers have marveled at how such a seemingly abstract discipline could so perfectly explain the natural world. More than that—mathematics has often made predictions, for example, about subatomic particles or cosmic phenomena that were unknown at the time, but later were proven to be true. Is mathematics ultimately invented or discovered? If, as Einstein insisted, mathematics is “a product of human thought that is independent of experience,” how can it so accurately describe and even predict the world around us? Physicist and author Mario Livio brilliantly explores mathematical ideas from Pythagoras to the present day as he shows us how intriguing questions and ingenious answers have led to ever deeper insights into our world. This fascinating book will interest anyone curious about the human mind, the scientific world, and the relationship between them.