Download Free The Thickness Dependence Of Oxygen Permeability In Sol Gel Derived Cgo Cofe2o4 Thin Films On Porous Ceramic Substrates Book in PDF and EPUB Free Download. You can read online The Thickness Dependence Of Oxygen Permeability In Sol Gel Derived Cgo Cofe2o4 Thin Films On Porous Ceramic Substrates and write the review.

This book focuses on research related to ionic conducting (e.g., protons, oxygen ions) materials and devices. Contributions range from fundamental materials R&D, to characterization, to materials for batteries, sensors, membranes, supercapacitors and fuel cells. Special emphasis is given to miniaturized solid-oxide fuel cells (micro-SOFCs), from fundamental materials studies which are still very much needed for this application, to the development of devices. Innovative concepts for energy storage are also discussed.
This book discusses recent advances in intermediate-temperature solid oxide fuel cells (IT-SOFCs), focusing on material development and design, mechanism study, reaction kinetics and practical applications. It consists of five chapters presenting different types of reactions and materials employed in electrolytes, cathodes, anodes, interconnects and sealants for IT-SOFCs. It also includes two chapters highlighting new aspects of these solid oxide fuel cells and exploring their practical applications. This insightful and useful book appeals to a wide readership in various fields, including solid oxide fuel cells, electrochemistry, membranes and ceramics. Zongping Shao is a Professor at the State Key Laboratory of Materials-Oriented Chemical Engineering and the College of Energy, Nanjing University of Technology, China. Moses O. Tade is a Professor at the Department of Chemical Engineering, Curtin University, Australia.
This book examines the various interfacial reactions that take place when glass seals come into contact with components of SOFCs in reducing and oxidizing conditions. In developing an understanding of the structure and function of SOFCs, interfacial compatibility is an imperative criterion. This book addresses the technical challenges of developing sealants to avoid leakage losses at high operating temperatures, which are profoundly impactful to the efficiency of the fuel cell. This resource is important for anyone working with or studying fuel cell design and development, and is a pivotal source of cutting-edge information for research groups actively engaged in developing hermetic and stable seals which show minimum interfacial chemical reaction with interconnect and electrolyte.
This book presents a unique collection of up-to-date applications of graphene for water science. Because water is an invaluable resource and the intelligent use and maintenance of water supplies is one of the most important and crucial challenges that stand before mankind, new technologies are constantly being sought to lower the cost and footprint of processes that make use of water resources as potable water as well as water for agriculture and industry, which are always in desperate demand. Much research is focused on graphene for different water treatment uses. Graphene, whose discovery won the 2010 Nobel Prize in physics, has been a shining star in the material science in the past few years. Owing to its interesting electrical, optical, mechanical and chemical properties, graphene has found potential applications in a wide range of areas, including water purification technology. A new type of graphene-based filter could be the key to managing the global water crisis. According to the World Economic Forum's Global Risks Report, lack of access to safe, clean water is the biggest risk to society over the coming decade. Yet some of these risks could be mitigated by the development of this filter, which is so strong and stable that it can be used for extended periods in the harshest corrosive environments, and with less maintenance than other filters on the market. The graphene-based filter could be used to filter chemicals, viruses, or bacteria from a range of liquids. It could be used to purify water, dairy products or wine, or in the production of pharmaceuticals. This book provides practical information to all those who are involved in this field.
Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.
The book summarizes the current state of the solid oxide fuel cell (SOFC) technology in power generation applications. It describes the single cells, SOFC stacks, micro-combined heat and power systems, large-scale stationary power generators and polygeneration units. The principles of modeling, simulation and controls of power systems with solid oxide fuel cells are presented and discussed. Authors provide theoretical background of the technology followed by the essential insights into the integrated power systems. Selected aspects of the design, construction and operation of power units in range from single kilowatts to hundreds of kilowatts are presented. Finally, the book reports the selected studies on prototype systems which have been constructed in Europe. The book discusses the theoretical and practical aspects of operation of power generators with solid oxide fuel cells including fabrication of cells, design of stacks, system modeling, simulation of stationary and non-stationary operation of systems, fuel preparation and controls.
Ames Laboratory, Iowa, USA
Handbook of Nanomaterials for Industrial Applications explores the use of novel nanomaterials in the industrial arena. The book covers nanomaterials and the techniques that can play vital roles in many industrial procedures, such as increasing sensitivity, magnifying precision and improving production limits. In addition, the book stresses that these approaches tend to provide green, sustainable solutions for industrial developments. Finally, the legal, economical and toxicity aspects of nanomaterials are covered in detail, making this is a comprehensive, important resource for anyone wanting to learn more about how nanomaterials are changing the way we create products in modern industry. - Demonstrates how cutting-edge developments in nanomaterials translate into real-world innovations in a range of industry sectors - Explores how using nanomaterials can help engineers to create innovative consumer products - Discusses the legal, economical and toxicity issues arising from the industrial applications of nanomaterials
Currently the research field of electrochemical cells is a hotspot for scientists and engineers working in advanced frontlines of micro-, nano- and bio-technologies, especially for improving our systems of energy generation and conversation, health care, and environmental protection. With the efforts from the authors and readers, the theoretical and practical development will continue to be advanced and expanded.