Download Free The Theory Of Orthomorphisms Of Groups And Orthogonal Latin Squares Book in PDF and EPUB Free Download. You can read online The Theory Of Orthomorphisms Of Groups And Orthogonal Latin Squares and write the review.

Orthomorphisms are mappings of a finite group onto itself which produce latin squares orthogonal to the square which is the addition table of the group. This paper gives methods of construction of orthomorphisms, their relation to finite plane geometries and their transformation properties. The theory is applied to all groups of order up to and including 12 and to the Veblen Wedderburn projective plane of order 9.
This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall–Paige conjecture. The use of latin squares in constructions of nets, affine planes, projective planes, and transversal designs also motivates this inquiry. The text begins by introducing fundamental concepts, like the tests for determining whether a latin square is based on a group, as well as orthomorphisms and complete mappings. From there, it describes the existence problem for complete mappings of groups, building up to the proof of the Hall–Paige conjecture. The third part presents a comprehensive study of orthomorphism graphs of groups, while the last part provides a discussion of Cartesian projective planes, related combinatorial structures, and a list of open problems. Expanding the author’s 1992 monograph, Orthomorphism Graphs of Groups, this book is an essential reference tool for mathematics researchers or graduate students tackling latin square problems in combinatorics. Its presentation draws on a basic understanding of finite group theory, finite field theory, linear algebra, and elementary number theory—more advanced theories are introduced in the text as needed.
This book is about orthomorphisms and complete mappings of groups, and related constructions of orthogonal latin squares. It brings together, for the first time in book form, many of the results in this area. The aim of this book is to lay the foundations for a theory of orthomorphism graphsof groups, and to encourage research in this area. To this end, many directions for future research are suggested. The material in this book should be accessible to any graduate student who has taken courses in algebra (group theory and field theory). It will mainly be useful in research on combinatorial design theory, group theory and field theory.
Latin Squares and Their Applications, Second edition offers a long-awaited update and reissue of this seminal account of the subject. The revision retains foundational, original material from the frequently-cited 1974 volume but is completely updated throughout. As with the earlier version, the author hopes to take the reader 'from the beginnings of the subject to the frontiers of research'. By omitting a few topics which are no longer of current interest, the book expands upon active and emerging areas. Also, the present state of knowledge regarding the 73 then-unsolved problems given at the end of the first edition is discussed and commented upon. In addition, a number of new unsolved problems are proposed. Using an engaging narrative style, this book provides thorough coverage of most parts of the subject, one of the oldest of all discrete mathematical structures and still one of the most relevant. However, in consequence of the huge expansion of the subject in the past 40 years, some topics have had to be omitted in order to keep the book of a reasonable length. Latin squares, or sets of mutually orthogonal latin squares (MOLS), encode the incidence structure of finite geometries; they prescribe the order in which to apply the different treatments in designing an experiment in order to permit effective statistical analysis of the results; they produce optimal density error-correcting codes; they encapsulate the structure of finite groups and of more general algebraic objects known as quasigroups. As regards more recreational aspects of the subject, latin squares provide the most effective and efficient designs for many kinds of games tournaments and they are the templates for Sudoku puzzles. Also, they provide a number of ways of constructing magic squares, both simple magic squares and also ones with additional properties. - Retains the organization and updated foundational material from the original edition - Explores current and emerging research topics - Includes the original 73 'Unsolved Problems' with the current state of knowledge regarding them, as well as new Unsolved Problems for further study
Optimum Design 2000
This volume is a collection of invited papers on the theory of groups, most of which were presented at the biennial Ohio State-Denison Conference, May 1992, in memory of Hans Zassenhaus. These papers treat important topics in the theory of p-groups, solvable groups, finitely presented groups, arithmetic groups, monodromy groups and the general structure and representation theory of groups. Of particular note are papers by John Walter on root systems, by Leonard Scott on integral equivalence of permutation representations and Alex Turull on generalized Brauer groups.
This book provides an introduction to quasigroup theory along with new structural results on some of the quasigroup classes. Many results are presented with some of them from mathematicians of the former USSR. These included results have not been published before in the western mathematical literature. In addition, many of the achievements obtained with regard to applications of quasigroups in coding theory and cryptology are described.
Dr Alan J Hoffman is a pioneer in linear programming, combinatorial optimization, and the study of graph spectra. In his principal research interests, which include the fields of linear inequalities, combinatorics, and matrix theory, he and his collaborators have contributed fundamental concepts and theorems, many of which bear their names.This volume of Dr Hoffman's selected papers is divided into seven sections: geometry; combinatorics; matrix inequalities and eigenvalues; linear inequalities and linear programming; combinatorial optimization; greedy algorithms; graph spectra. Dr Hoffman has supplied background commentary and anecdotal remarks for each of the selected papers. He has also provided autobiographical notes showing how he chose mathematics as his profession, and the influences and motivations which shaped his career.
Dr Alan J Hoffman is a pioneer in linear programming, combinatorial optimization, and the study of graph spectra. In his principal research interests, which include the fields of linear inequalities, combinatorics, and matrix theory, he and his collaborators have contributed fundamental concepts and theorems, many of which bear their names. This volume of Dr Hoffman's selected papers is divided into seven sections: geometry; combinatorics; matrix inequalities and eigenvalues; linear inequalities and linear programming; combinatorial optimization; greedy algorithms; graph spectra. Dr Hoffman has supplied background commentary and anecdotal remarks for each of the selected papers. He has also provided autobiographical notes showing how he chose mathematics as his profession, and the influences and motivations which shaped his career. Contents: The Variation of the Spectrum of a Normal Matrix (with H W Wielandt); Integral Boundary Points of Convex Polyhedra (with J Kruskal); On Moore Graphs with Diameters 2 and 3 (with R R Singleton); Cycling in the Simplex Algorithm; On Approximate Solutions of Systems of Linear Inequalities; On the Polynomial of a Graph; Some Recent Applications of the Theory of Linear Inequalities of Extremal Combinatorial Analysis; On Simple Linear Programming Problems; Self-Orthogonal Latin Squares (with R K Brayton & D Coppersmith); On the Nonsingularity of Complex Matrices (with P Camion); A Generalization of Max Flow-Min Cut; A Characterization of Comparability Graphs and of Interval Graphs (with P C Gilmore); and 33 other papers. Readership: Researchers in linear programming and inequalities, combinatorics, combinatorial optimization, graph theory, matrix theory and operations research.