Download Free The Theory And Practice Of Scintillation Counting Book in PDF and EPUB Free Download. You can read online The Theory And Practice Of Scintillation Counting and write the review.

The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.
Scintillation Dosimetry delivers a comprehensive introduction to plastic scintillation dosimetry, covering everything from basic radiation dosimetry concepts to plastic scintillating fiber optics. Comprised of chapters authored by leading experts in the medical physics community, the book: Discusses a broad range of technical implementations, from point source dosimetry scaling to 3D-volumetric and 4D-scintillation dosimetry Addresses a wide scope of clinical applications, from machine quality assurance to small-field and in vivo dosimetry Examines related optical techniques, such as optically stimulated luminescence (OSL) or Čerenkov luminescence Thus, Scintillation Dosimetry provides an authoritative reference for detailed, state-of-the-art information on plastic scintillation dosimetry and its use in the field of radiation dosimetry.
The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 ...
Proceedings of the 1989 international conference, this book is excellent coverage of new trends and established methods in the field of liquid scintillation counting and organic scintillators. Any scientist working with scintillators will find this book valuable.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Alpha liquid scintillation was developed to obtain accurate analytical determinations of alpha-emitting nuclides where no other methods were sufficiently accurate. With the present emphasis on clean-up of radiation contamination, alpha liquid scintillation has become an important tool in the determination of low concentrations of alpha-emitting nuclides. This book is the first to address the subject of alpha liquid scintillation in its entirety. It also examines how alpha spectrometry by liquid scintillation can be done without interference from beta/gamma radiation. Scientists interested in the analysis of alpha-emitting nuclides for environmental monitoring, remediation clean-up, accountability, and research will find this to be a valuable book.
This handbook gives a complete and concise description of the up-to-date knowledge of nuclear and radiochemsitry and applications in the various fields of science. I is based on teaching courses and on research for over 40 years. The book is addressed to any researcher whishing sound knowledge about the properties of matter, be it a chemist, a physicist, a medical doctor, a mineralogist or a biologist. They will all find it a valuable source of information about the principles and applications of nuclear and radiochemistry. Research in radiochemistry includes: Study of radioactice matter in nature, investigation of radioactive transmutations by chemical methods, chemistry of radioelements etc. Applications include: Radionuclides in geo- and cosmochemistry, dating by nuclear methods, radioanalysis, Mössbaur spectroscopy and related methods, behaviour of natural and man-made radionuclides in the environment, dosimetry and radiation protection. All subjects are presented clearly and comprehensibly, and in logical sequence. Detailed derivations of equations are avoided and relevant information is compiled in tables. The recent edition of the multi-coloured Karlsruhe 'Chart of the Nuclides' is included. Clearly a standard work by an author with extensive experience in research and teaching.