Download Free The Theory And Practice Of Formal Verification Of Software Book in PDF and EPUB Free Download. You can read online The Theory And Practice Of Formal Verification Of Software and write the review.

Static analysis of software with deductive methods is a highly dynamic field of research on the verge of becoming a mainstream technology in software engineering. It consists of a large portfolio of - mostly fully automated - analyses: formal verification, test generation, security analysis, visualization, and debugging. All of them are realized in the state-of-art deductive verification framework KeY. This book is the definitive guide to KeY that lets you explore the full potential of deductive software verification in practice. It contains the complete theory behind KeY for active researchers who want to understand it in depth or use it in their own work. But the book also features fully self-contained chapters on the Java Modeling Language and on Using KeY that require nothing else than familiarity with Java. All other chapters are accessible for graduate students (M.Sc. level and beyond). The KeY framework is free and open software, downloadable from the book companion website which contains also all code examples mentioned in this book.
"Aimed mainly at practitioners in software engineering and formal methods, this book will also be of interest to academic researchers working in formal methods, and students on advanced software engineering courses who need real-life specifications and examples on which to base their work."--Jacket.
This is an excellent introduction to formal methods which will bring anyone who needs to know about this important topic up to speed. It is comprehensive, giving the reader all the information needed to explore the field of formal methods in more detail. It offers: a guide to the mathematics required; comprehensive but easy-to-understand introductions to various methods; a run-down of how formal methods can help to develop high-quality systems that come in on time, within budget, and according to requirements.
Based around a theme of the construction of a game engine, this textbook is for final year undergraduate and graduate students, emphasising formal methods in writing robust code quickly. This book takes an unusual, engineering-inspired approach to illuminate the creation and verification of large software systems . Where other textbooks discuss business practices through generic project management techniques or detailed rigid logic systems, this book examines the interaction between code in a physical machine and the logic applied in creating the software. These elements create an informal and rigorous study of logic, algebra, and geometry through software. Assuming prior experience with C, C++, or Java programming languages, chapters introduce UML, OCL, and Z from scratch. Extensive worked examples motivate readers to learn the languages through the technical side of software science.
A handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.
This festschrift volume constitutes a unique tribute to Zohar Manna on the occasion of his 64th birthday. Like the scientific work of Zohar Manna, the 32 research articles span the entire scope of the logical half of computer science. Also included is a paean to Zohar Manna by the volume editor. The articles presented are devoted to the theory of computing, program semantics, logics of programs, temporal logic, automated deduction, decision procedures, model checking, concurrent systems, reactive systems, hardware and software verification, testing, software engineering, requirements specification, and program synthesis.
This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given.
This book constitutes the refereed proceedings of the workshops which complemented the 23rd Symposium on Formal Methods, FM 2019, held in Porto, Portugal, in October 2019. This volume presents the papers that have been accepted for the following workshops: Third Workshop on Practical Formal Verification for Software Dependability, AFFORD 2019; 8th International Symposium From Data to Models and Back, DataMod 2019; First Formal Methods for Autonomous Systems Workshop, FMAS 2019; First Workshop on Formal Methods for Blockchains, FMBC 2019; 8th International Workshop on Formal Methods for Interactive Systems, FMIS 2019; First History of Formal Methods Workshop, HFM 2019; 8th International Workshop on Numerical and Symbolic Abstract Domains, NSAD 2019; 9th International Workshop on Open Community Approaches to Education, Research and Technology, OpenCERT 2019; 17th Overture Workshop, Overture 2019; 19th Refinement Workshop, Refine 2019; First International Workshop on Reversibility in Programming, Languages, and Automata, RPLA 2019; 10th International Workshop on Static Analysis and Systems Biology, SASB 2019; and the 10th Workshop on Tools for Automatic Program Analysis, TAPAS 2019.
Students explore the idea that thinking is a form of computation by learning to write simple computer programs for tasks that require thought. This book guides students through an exploration of the idea that thinking might be understood as a form of computation. Students make the connection between thinking and computing by learning to write computer programs for a variety of tasks that require thought, including solving puzzles, understanding natural language, recognizing objects in visual scenes, planning courses of action, and playing strategic games. The material is presented with minimal technicalities and is accessible to undergraduate students with no specialized knowledge or technical background beyond high school mathematics. Students use Prolog (without having to learn algorithms: “Prolog without tears!”), learning to express what they need as a Prolog program and letting Prolog search for answers. After an introduction to the basic concepts, Thinking as Computation offers three chapters on Prolog, covering back-chaining, programs and queries, and how to write the sorts of Prolog programs used in the book. The book follows this with case studies of tasks that appear to require thought, then looks beyond Prolog to consider learning, explaining, and propositional reasoning. Most of the chapters conclude with short bibliographic notes and exercises. The book is based on a popular course at the University of Toronto and can be used in a variety of classroom contexts, by students ranging from first-year liberal arts undergraduates to more technically advanced computer science students.
Evolution of software has long been recognized as one of the most problematic and challenging areas in the field of software engineering, as evidenced by the high, often up to 60-80%, life-cycle costs attributed to this activity over the life of a software system. Studies of software evolution are central to the understanding and practice of software development. Yet it has received relatively little attention in the field of software engineering. This book focuses on topics aimed at giving a scientific insight into the aspect of software evolution and feedback. In summary, the book covers conceptual, phenomenological, empirical, technological and theoretical aspects of the field of software evolution - with contributions from the leading experts. This book delivers an up-to-date scientific understanding of what software evolution is, to show why it is inevitable for real world applications, and it demonstrates the role of feedback in software development and maintenance. The book also addresses some of the phenomenological and technological underpinnings and includes rules and guidelines for increased software evolvability and, in general, sustainability of the evolution process. Software Evolution and Feedback provides a long overdue, scientific focus on software evolution and the role of feedback in the software process, making this the indispensable guide for all software practitioners, researchers and managers in the software industry.