Download Free The Teaching Of Elementary Mechanics Book in PDF and EPUB Free Download. You can read online The Teaching Of Elementary Mechanics and write the review.

This book – specifically developed as a novel textbook on elementary classical mechanics – shows how analytical and numerical methods can be seamlessly integrated to solve physics problems. This approach allows students to solve more advanced and applied problems at an earlier stage and equips them to deal with real-world examples well beyond the typical special cases treated in standard textbooks. Another advantage of this approach is that students are brought closer to the way physics is actually discovered and applied, as they are introduced right from the start to a more exploratory way of understanding phenomena and of developing their physical concepts. While not a requirement, it is advantageous for the reader to have some prior knowledge of scientific programming with a scripting-type language. This edition of the book uses Matlab, and a chapter devoted to the basics of scientific programming with Matlab is included. A parallel edition using Python instead of Matlab is also available. Last but not least, each chapter is accompanied by an extensive set of course-tested exercises and solutions.
When asked to start teaching a course on engineering fracture mechanics, I realized that a concise textbook, giving a general oversight of the field, did not exist. The explanation is undoubtedly that the subject is still in a stage of early development, and that the methodologies have still a very limited applicability. It is not possible to give rules for general application of fracture mechanics concepts. Yet our comprehension of cracking and fracture beha viour of materials and structures is steadily increasing. Further developments may be expected in the not too distant future, enabling useful prediction of fracture safety and fracture characteristics on the basis of advanced fracture mechanics procedures. The user of such advanced procedures m\lst have a general understanding of the elementary concepts, which are provided by this volume. Emphasis was placed on the practical application of fracture mechanics, but it was aimed to treat the subject in a way that may interest both metallurgists and engineers. For the latter, some general knowledge of fracture mechanisms and fracture criteria is indispensable for an apprecia tion of the limita tions of fracture mechanics. Therefore a general discussion is provided on fracture mechanisms, fracture criteria, and other metal lurgical aspects, without going into much detail. Numerous references are provided to enable a more detailed study of these subjects which are still in a stage of speculative treatment.
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments. Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, most of the book is confined to considerations of one-dimensional systems. A selection of 150 problems, many of which require prolonged study, amplify the text's teachings and an appendix contains solutions to 50 representative problems. This edition also includes a new Introduction by Joseph A. Rudnick and Robert Finkelstein.
This open access textbook takes the reader step-by-step through the concepts of mechanics in a clear and detailed manner. Mechanics is considered to be the core of physics, where a deep understanding of the concepts is essential in understanding all branches of physics. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics. After solving all of the examples, the reader will have gained a solid foundation in mechanics and the skills to apply the concepts in a variety of situations. The book is useful for undergraduate students majoring in physics and other science and engineering disciplines. It can also be used as a reference for more advanced levels.
One of the key components of modern physics, quantum mechanics is used in such fields as chemistry, electrical engineering, and computer science. Central to quantum mechanics is Schrödinger's Equation, which explains the behavior of atomic particles and the energy levels of a quantum system. Robert Gilmore's innovative approach to Schrödinger's Equation offers new insight into quantum mechanics at an elementary level. Gilmore presents compact transfer matrix methods for solving quantum problems that can easily be implemented on a personal computer. He shows how to use these methods on a large variety of potentials, both simple and periodic. He shows how to compute bound states, scattering states, and energy bands and describes the relation between bound and scattering states. Chapters on alloys, superlattices, quantum engineering, and solar cells indicate the practical application of the methods discussed. Gilmore's concise and elegant treatment will be of interest to students and professors of introductory and intermediate quantum courses, as well as professionals working in electrical engineering and applied mathematics.
Fluid mechanics is the study under all possible conditions of rest and motion. Its approaches analytical, rational, and mathematical rather than empirical it concerns itself with those basic principles which lead to the solution of numerous diversified problems, and it seeks results which are widely applicable to similar fluid situations and not limited to isolated special cases. Fluid mechanics recognizes no arbitrary boundaries between fields of engineering knowledge but attempts to solve all fluid problems, irrespective of their occurrence or of the characteristics of the fluids involved. This textbook is intended primarily for the beginner who knows the principles of mathematics and mechanics but has had no previous experience with fluid phenomena. The abilities of the average beginner and the tremendous scope of fluid mechanics appear to be in conflict, and the former obviously determine limits beyond which it is not feasible to go these practical limits represent the boundaries of the subject which I have chosen to call elementary fluid mechanics. The apparent conflict between scope of subject and beginner ability is only along mathematical lines, however, and the physical ideas of fluid mechanics are well within the reach of the beginner in the field. Holding to the belief that physical concepts are the sine qua non of mechanics, I have sacrificed mathematical rigor and detail in developing physical pictures and in many cases have stated general laws only without numerous exceptions and limitations in order to convey basic ideas such oversimplification is necessary in introducing a new subject to the beginner. Like other courses in mechanics, fluid mechanics must include disciplinary features as well as factual information the beginner must follow theoretical developments, develop imagination in visualizing physical phenomena, and be forced to think his way through problems of theory and application. The text attempts to attain these objectives in the following ways omission of subsidiary conclusions is designed to encourage the student to come to some conclusions by himself application of bare principles to specific problems should develop ingenuity illustrative problems are included to assist in overcoming numerical difficulties and many numerical problems for the student to solve are intended not only to develop ingenuity but to show practical applications as well. Presentation of the subject begins with a discussion of fundamentals, physical properties and fluid statics. Frictionless flow is then discussed to bring out the applications of the principles of conservation of mass and energy, and of impulse-momentum law, to fluid motion. The principles of similarity and dimensional analysis are next taken up so that these principles may be used as tools in later developments. Frictional processes are discussed in a semi-quantitative fashion, and the text proceeds to pipe and open-channel flow. A chapter is devoted to the principles and apparatus for fluid measurements, and the text ends with an elementary treatment of flow about immersed objects.