Download Free The Synthesis Characterization And Reactivity Of Ruthenium Coordination Complexes Book in PDF and EPUB Free Download. You can read online The Synthesis Characterization And Reactivity Of Ruthenium Coordination Complexes and write the review.

30 years after its discovery as an antitumor agent, cisplatin represents today one of the most successful drugs in chemotherapy. This book is intended to reminisce this event, to take inventory, and to point out new lines of development in this field. Divided in 6 sections and 22 chapters, the book provides an up-to-date account on topics such as - the chemistry and biochemistry of cisplatin, - the clinical status of Pt anticancer drugs, - the impact of cisplatin on inorganic and coordination chemistry, - new developments in drug design, testing and delivery. It also includes a chapter describing the historical development of the discovery of cisplatin. The ultimate question - How does cisplatin kill a cell? - is yet to be answered, but there are now new links suggesting how Pt binding to DNA may trigger a cascade of cellular reactions that eventually result in apoptosis. p53 and a series of damage recognition proteins of the HMG-domain family appear to be involved. The book addresses the problem of mutagenicity of Pt drugs and raises the question of the possible relevance of the minor DNA adducts, e.g. of interstrand cross-links, and the possible use of trans-(NH3)2Pt(II)-modified oligonucleotides in antisense and antigene strategies. Our present understanding of reactions of cisplatin with DNA is based upon numerous model studies (from isolated model nucleobases to short DNA fragments) and application of a large body of spectroscopic and other physico-chemical techniques. Thanks to these efforts there is presently no other metal ion whose reactions with nucleic acids are better understood than Pt. In a series of chapters, basic studies on the interactions of Pt electrophiles with nucleobases, oligonucleotides, DNA, amino acids, peptides and proteins are reported, which use, among others, sophisticated NMR techniques or X-ray crystallography, to get remarkable understanding of details on such reactions. Reactivity of cisplatin, once bound to DNA and formerly believed to be inert enough to stay, is an emerging phenomenon. It has (not yet) widely been studied but is potentially extremely important. Medicinal bioinorganic chemistry - the role of metal compounds in medicine - has received an enormous boost from cisplatin, and so has bioinorganic chemistry as a whole. There is hardly a better example than cisplatin to demonstrate what bioinorganic chemistry is all about: The marriage between classic inorganic (coordination) chemistry and the other life sciences - medicine, pharmacy, biology, biochemistry. Cisplatin has left its mark also on areas that are generally considered largely inorganic. The subject of mixed-valance Pt compounds is an example: From the sleeping beauty it made its way to the headlines of scientific journals, thanks to a class of novel Pt antitumor agents, the so-called "platinum pyrimidine blues". In the aftermath diplatinum (III) compounds were recognized and studies in large numbers, and now an organometalic chemistry of these diplatinum (III) species is beginning to emerge. The final section of the book is concerned with new developments such as novel di- and trinuclear Pt(II) drugs with DNA binding properties different from those of cisplatin, with orally active Pt(IV) drugs which are presently in clinical studies, and with attempts to modify combinatorial chemistry in such a way that it may become applicable to fast screening of Pt antitumor drugs. The potential of including computational methods in solving questions of Pt-DNA interactions is critically dealt with in the concluding chapter.
Direct Synthesis of Metal Complexes provides in-depth coverage of the direct synthesis of coordination and organometallic compounds. The work is primarily organized by methods, but also covers highly relevant complexes, such as metal-polymer coordination compounds. This updated reference discusses recent developments in cryosynthesis, electrosynthesis, and tribosynthesis (popular as it doesn't require organic solvents), with special attention paid to 'greener' methodologies and approaches. Additionally, the book describes physical methods of zero-valent metal interaction with organic matter, including sputtering, ultrasonic treatment and synthesis in ionic liquids. The book presents completely new content as a follow-up to the 1999 Elsevier Science publication Direct Synthesis of Coordination and Organometallic Compounds that was edited by Dr. Garnovskii and Dr. Kharisov. - Covers current methods and techniques of metal interactions with organic media leading to metal chelates, adducts, di- and polymetallic complexes, metal-containing macrocycles, supported coordination compounds (i.e., metal complexes on carbon nanotubes), and more - Describes reactivities of distinct forms of elemental metals (powders, sheets, nanoparticles (including a host of less-common metal nanostructures) with organic phase (liquid, solid and gaseous) and water - Includes experimental procedures, with examples of direct synthesis, at the end of each chapter
In this comprehensive book, one of the leading experts, Shun-Ichi Murahashi, presents all the important facets of modern synthetic chemistry using Ruthenium, ranging from hydrogenation to metathesis. In 14 contributions, written by an international authorship, readers will find all the information they need about this fascinating and extraordinary chemistry. The result is a high quality information source and a indispensable reading for everyone working in organometallic chemistry. From the contents: Introduction (S.-I. Murahashi) Hydrogenation and Transfer Hydrogenation (M. Kitamura and R. Noyori) Oxidations (S.-I. Murahashi and N. Komiya) Carbon-Carbon Bond Formations via Ruthenacycle Intermediates (K. Itoh) Carbon-Carbon Bond Formation via pi-Allylruthenium Intermediates (T. Mitsudo) Olefin Metathesis (R. H. Grubbs) Cyclopropanation (H. Nishiyama) Nucleophilic Addition to Alkynes and Reactions via Vinylidene Intermediates (P. Dixneuf) Reactions via C-H Activation (N. Chatani) Lewis Acid Reactions (E. P. Kundig) Reactions with CO and CO2 (T. Mitsudo) Isomerization of Organic Substrates Catalyzed by Ruthenium Complexes (H. Suzuki) Radical Reactions (H. Nagashima) Bond Cleavage Reactions (S. Komiya)
This book is organized into 12 important chapters that focus on the progress made by metal-based drugs as anticancer, antibacterial, antiviral, anti-inflammatory, and anti-neurodegenerative agents, as well as highlights the application areas of newly discovered metallodrugs. It can prove beneficial for researchers, investigators and scientists whose work involves inorganic and coordination chemistry, medical science, pharmacy, biotechnology and biomedical engineering.
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
Understanding, identifying and influencing the biological systems are the primary objectives of chemical biology. From this perspective, metal complexes have always been of great assistance to chemical biologists, for example, in structural identification and purification of essential biomolecules, for visualizing cellular organelles or to inhibit specific enzymes. This inorganic side of chemical biology, which continues to receive considerable attention, is referred to as inorganic chemical biology. Inorganic Chemical Biology: Principles, Techniques and Applications provides a comprehensive overview of the current and emerging role of metal complexes in chemical biology. Throughout all of the chapters there is a strong emphasis on fundamental theoretical chemistry and experiments that have been carried out in living cells or organisms. Outlooks for the future applications of metal complexes in chemical biology are also discussed. Topics covered include: • Metal complexes as tools for structural biology • IMAC, AAS, XRF and MS as detection techniques for metals in chemical biology • Cell and organism imaging and probing DNA using metal and metal carbonyl complexes • Detection of metal ions, anions and small molecules using metal complexes • Photo-release of metal ions in living cells • Metal complexes as enzyme inhibitors and catalysts in living cells Written by a team of international experts, Inorganic Chemical Biology: Principles, Techniques and Applications is a must-have for bioinorganic, bioorganometallic and medicinal chemists as well as chemical biologists working in both academia and industry.
Edited by a team of highly respected researchers combining their expertise in chemistry, physics, and medicine, this book focuses on the use of rutheniumcontaining complexes in artificial photosynthesis and medicine. Following a brief introduction to the basic coordination chemistry of ruthenium complexes and their synthesis in section one, as well as their photophysical and photochemical properties, the authors discuss in detail the major concepts of artificial photosynthesis and mechanisms of hydrogen production and water oxidation with ruthenium in section two. The third section of the text covers biological properties and important medical applications of ruthenium complexes as therapeutic agents or in diagnostic imaging. Aimed at stimulating research in this active field, this is an invaluable information source for researchers in academia, health research institutes and governmental departments working in the field of organometallic chemistry, green and sustainable chemistry as well as medicine/drug discovery, while equally serving as a useful reference also for scientists in industry.
This book summarizes recent progresses in inorganic fluorine chemistry. Highlights include new aspects of inorganic fluorine chemistry, such as new synthetic methods, structures of new fluorides and oxide fluorides, their physical and chemical properties, fluoride catalysts, surface modifications of inorganic materials by fluorination process, new energy conversion materials and industrial applications. Fluorine has quite unique properties (highest electronegativity; very small polarizability). In fact, fluorine is so reactive that it forms fluorides with all elements except with the lightest noble gases helium, neon and argon. Originally, due to its high reactivity, fluoride chemistry faced many technical difficulties and remained undeveloped for many years. Now, however, a large number of fluorine-containing materials are currently produced for practical uses on an industrial scale and their applications are rapidly extending to many fields. Syntheses and structure analyses of thermodynamically unstable high-oxidation-state fluorides have greatly contributed to inorganic chemistry in this decade. Fluoride catalysts and surface modifications using fluorine are developing a new field of fluorine chemistry and will enable new syntheses of various compounds. The research on inorganic fluorides is now contributing to many chemical energy conversion processes such as lithium batteries. Furthermore, new theoretical approaches to determining the electronic structures of fluorine compounds are also progressing. On the industrial front, the use of inorganic fluorine compounds is constantly increasing, for example, in semi-conductor industry. "Advanced Inorganic Fluorides: Synthesis, Characterization and Applications" focuses on these new features in inorganic fluorine chemistry and its industrial applications. The authors are outstanding experts in their fields, and the contents of the book should prove to be of valuable assistance to all chemists, graduates, students and researchers in the field of fluorine chemistry.
The Inorganic Syntheses series provides all users of inorganic substances with detailed and foolproof procedures for the preparation of important and timely compounds. Includes complete, up-to-date procedures involving important inorganic substances Contains subject, contributor, and formula indexes