Download Free The Synthesis Characterization And Oxidation State Dependent Reactivity Of Rhi Complexes Formed From Novel Redox Active Ligands Book in PDF and EPUB Free Download. You can read online The Synthesis Characterization And Oxidation State Dependent Reactivity Of Rhi Complexes Formed From Novel Redox Active Ligands and write the review.

Homogeneous hydrogenation is one of the most thoroughly studied fields of homogeneous catalysis. The results of these studies have proved to be most important for an understanding of the underlying principles of the activation of small molecules by transition metal complexes. During the past three decades homogeneous hydrogenation has found widespread application in organic chemistry, including the production of important pharmaceuticals, especially where a sophisticated degree of selectivity is required. This volume presents a general account of the main principles and applications of homogeneous hydrogenation by transition metal complexes. Special attention is devoted to the mechanisms by which these processes occur, and the role of the recently discovered complexes of molecular hydrogen is described. Sources of hydrogen, other than H2, are also considered (transfer hydrogenation). The latest achievements in highly stereoselective hydrogenations have made possible many new applications in organic synthesis. These applications are documented by giving details of the reduction of important unsaturated substrates (alkenes, alkynes, aldehydes and ketones, nitrocompounds, etc.). Hydrogenation in biphasic and phase transfer catalyzed systems is also described. Finally, a discussion of the biochemical routes of H2 activation highlights the similarities and differences in performing hydrogenation in both natural and synthetic systems. For researchers working in the fields of homogeneous catalysis, especially in areas such as pharmaceuticals, plastics and fine chemicals.
This first handbook to focus solely on the application of N-heterocyclic carbenes in synthesis covers metathesis, organocatalysis, oxidation and asymmetric reactions, along with experimental procedures. Written by leading international experts this is a valuable and practical source for every organic chemist.
Comprehensive Coordination Chemistry II (CCC II) is the sequel to what has become a classic in the field, Comprehensive Coordination Chemistry, published in 1987. CCC II builds on the first and surveys new developments authoritatively in over 200 newly comissioned chapters, with an emphasis on current trends in biology, materials science and other areas of contemporary scientific interest.
b”Supported Metal Single Atom CatalysisCovers all key aspects of supported metal single atom catalysts, an invaluable resource for academic researchers and industry professionals alike Single atom catalysis is one of the most innovative and dynamic research areas in catalysis science. Supported metal catalysts are used extensively across the chemical industry, ranging from fine and bulk chemical production to petrochemicals. Single atom catalysts (SACs) combine the advantages of both homogeneous and heterogeneous catalysts such as catalyst stability, activity, and high dispersion of the active phase. Supported Metal Single Atom Catalysis provides an authoritative and up-to-date overview of the emerging field, covering the synthesis, preparation, characterization, modeling, and applications of SACs. This comprehensive volume introduces the basic principles of single atom catalysis, describes metal oxide and carbon support materials for SAC preparation, presents characterization techniques and theoretical calculations, and discusses SACs in areas including selective hydrogenation, oxidation reactions, activation of small molecules, C-C bond formation, and biomedical applications. Highlights the activity, selectivity, and stability advantages of supported metal SACs compared to other heterogeneous catalysts Covers applications of SACs in thermal catalysis, electrocatalysis, and photocatalysis Includes chapters on single atom alloys and supported double and triple metal atom catalysts Discusses the prospects, challenges, and potential industrial applications of SACs Supported Metal Single Atom Catalysis is an indispensable reference for all those working in the fields of catalysis, solid-state chemistry, materials science, and spectroscopy, including catalytic chemists, organic chemists, electrochemists, theoretical chemists, and industrial chemists.
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
Gerard van Koten: The Mono-anionic ECE-Pincer Ligand - a Versatile Privileged Ligand Platform: General Considerations.- Elena Poverenov, David Milstein: Non-Innocent Behavior of PCP and PCN Pincer Ligands of Late Metal Complexes.- Dean M. Roddick: Tuning of PCP Pincer Ligand Electronic and Steric Properties.- Gemma R. Freeman, J. A. Gareth Williams: Metal Complexes of Pincer Ligands: Excited States, Photochemistry, and Luminescence.- Davit Zargarian, Annie Castonguay, Denis M. Spasyuk: ECE-Type Pincer Complexes of Nickel.- Roman Jambor and Libor Dostál: The Chemistry of Pincer Complexes of 13 - 15 Main Group Elements.- Kálmán J. Szabo: Pincer Complexes as Catalysts in Organic Chemistry.- Jun-ichi Ito and Hisao Nishiyama: Optically Active Bis(oxazolinyl)phenyl Metal Complexes as Multi-potent Catalysts.- Anthony St. John, Karen I. Goldberg, and D. Michael Heinekey: Pincer Complexes as Catalysts for Amine Borane Dehydrogenation.- Dmitri Gelman and Ronit Romm: PC(sp3)P Transition Metal Pincer Complexes: Properties and Catalytic Applications.- Jennifer Hawk and Steve Craig: Physical Applications of Pincer Complexes.
A guide and comprehensive review of the most recent advances in homogeneous hydrogenation with non-precious catalysts In recent years a great deal of research has been applied to homogeneous hydrogenation with non-precious catalysis. Homogeneous Hydrogenation with Non-Precious Catalysts offers a review of the latest developments and advances in the field. In addition, the book explores the transition metal catalysis and the concept of frustrated-lewis-pair (FLP) and enzymatic processes. The editor?a noted expert on the topic?discusses the various catalysts and puts the focus on the synthetic vantage point, highlighting the functional group transformation enabled by the respective catalyst. Homogeneous Hydrogenation with Non-Precious Catalysts also presents the industrial view of the topic and includes an overview of the various catalysts by functional group transformations. This important book: -Offers a comprehensive presentation of the newest development in this emerging field -Highlights the transition metal catalysis, the frustrated-lewis-pair (FLP) concept, and enzymatic processes -Provides an industrial perspective of the topic -Includes an overview of the various catalysis by functional group transformations Written for organic chemists, researchers in synthetic chemistry, and industry professionals, Homogeneous Hydrogenation with Non-Precious Catalysts offers a comprehensive and accessible guide to the most recent advances in the field. [/COPY_WEB_CATALOG]
This new book on this hot topic summarizes the key achievements for the synthesis and catalytic applications of pincer and pincer-type complexes, providing readers with the latest research highlights. The editors have assembled an international team of leaders in the field, and their contributions focus on the application of various pincer complexes in modern organic synthesis and catalysis, such as C-C and C-X bond forming reactions, C-H bond functionalization, and the activation of small molecules, as well as asymmetric catalysis. A must-have for every synthetic chemist in both academia and industry intending to develop new catalysts and improved synthetic protocols.
Surface organometallic chemistry is a new field bringing together researchers from organometallic, inorganic, and surface chemistry and catalysis. Topics ranging from reaction mechanisms to catalyst preparation are considered from a molecular basis, according to which the "active site" on a catalyst surface has a supra-molecular character. This. the first book on the subject, is the outcome of a NATO Workshop held in Le Rouret. France, in May. 1986. It is our hope that the following chapters and the concluding summary of recommendations for research may help to provide a definition of surface organometallic chemistry. Besides catalysis. the central theme of the Workshop, four main topics are considered: 1) Reactions of organometallics with surfaces of metal oxides, metals. and zeolites; 2) Molecular models of surfaces, metal oxides, and metals; 3) Molecular approaches to the mechanisms of surface reactions; 4) Synthesis and modification of zeolites and related microporous solids. Most surface organometallic chemistry has been carried out on amorphous high-surf ace-area metal oxides such as silica. alumina. magnesia, and titania. The first chapter. contributed by KNOZINGER. gives a short summary of the structure and reactivity of metal oxide surfaces. Most of our understanding of these surfaces is based on acid base and redox chemistry; this chemistry has developed from X-ray and spectroscopic data, and much has been inferred from the structures and reactivities of adsorbed organic probe molecules. There are major opportunities for extending this understanding by use of well-defined (single crystal) oxide surfaces and organometallic probe molecules.