Download Free The Synthesis And Transport Properties Of Conjugated Molecular Wires Book in PDF and EPUB Free Download. You can read online The Synthesis And Transport Properties Of Conjugated Molecular Wires and write the review.

This volume contains the proceedings of the NATO Advanced Research Workshop on "Atomic and Molecular Wires". It was sponsored by the Ministry of Scientific Affairs Division special program on Nanoscale Science with the support of the CNRS and the Max Planck Institute. Scientists working or interested in the properties of wires at a subnanoscale were brought together in Les Houches (France) from 6 to 10 May 1996. Subnanoscale wires can be fabricated either by surface physicists (atomic wires) or by synthetic chemists (molecular wires). Both communities present their foremost advances using, for example, STM to assemble atomic lines atom for atom, to fabricate a mask for such a line or using the wide range of chemical synthesis techniques to obtain long, rigid and conjugated oligomers. Interconnecting such tiny wires to sources (voltage, current) continues to demand a great technological effort. But nanolithography associated with microfabrication or STM are now clearly identified paths for measuring the electrical resistance of an atomic or a molecular wire. The first measurements have been reported on Xe , benzene, C ' di(phenylene-ethynylene) showing 2 60 the need for a deeper understanding of transport phenomena through subnanowires. Such transport phenomena like tunnel (off-resonance) transport and Coulomb blockade have been discussed by theorists with an emphasis on the exponential decrease of the tunnel current with the wire length versus the ballistic regime of transport.
As functional elements in opto-electronic devices approach the singlemolecule limit, conducting organic molecular wires are the appropriate interconnects that enable transport of charges and charge-like particles such as excitons within the device. Reproducible syntheses and a thorough understanding of the underlying principles are therefore indispensable for applications like even smaller transistors, molecular machines and light-harvesting materials. Bringing together experiment and theory to enable applications in real-life devices, this handbook and ready reference provides essential information on how to control and direct charge transport. Readers can therefore obtain a balanced view of charge and exciton transport, covering characterization techniques such as spectroscopy and current measurements together with quantitative models. Researchers are thus able to improve the performance of newly developed devices, while an additional overview of synthesis methods highlights ways of producing different organic wires. Written with the following market in mind: chemists, molecular physicists, materials scientists and electrical engineers.
Provides in-depth knowledge on molecular electronics and emphasizes the techniques for designing molecular junctions with controlled functionalities This comprehensive book covers the major advances with the most general applicability in the field of molecular electronic devices. It emphasizes new insights into the development of efficient platform methodologies for building such reliable devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. It also helps to develop an understanding of the device fabrication processes and the characteristics of the resulting electrode-molecule interface. Beginning with an introduction to the subject, Molecular-Scale Electronics: Concept, Fabrication and Applications offers full chapter coverage on topics such as: Metal Electrodes for Molecular Electronics; Carbon Electrodes for Molecular Electronics; Other Electrodes for Molecular Electronics; Novel Phenomena in Single-Molecule Junctions; and Supramolecular Interactions in Single-Molecule Junctions. Other chapters discuss Theoretical Aspects for Electron Transport through Molecular Junctions; Characterization Techniques for Molecular Electronics; and Integrating Molecular Functionalities into Electrical Circuits. The book finishes with a summary of the primary challenges facing the field and offers an outlook at its future. * Summarizes a number of different approaches for forming molecular-scale junctions and discusses various experimental techniques for examining these nanoscale circuits in detail * Gives overview of characterization techniques and theoretical simulations for molecular electronics * Highlights the major contributions and new concepts of integrating molecular functionalities into electrical circuits * Provides a critical discussion of limitations and main challenges that still exist for the development of molecular electronics * Suited for readers studying or doing research in the broad fields of Nano/molecular electronics and other device-related fields Molecular-Scale Electronics is an excellent book for materials scientists, electrochemists, electronics engineers, physical chemists, polymer chemists, and solid-state chemists. It will also benefit physicists, semiconductor physicists, engineering scientists, and surface chemists.
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
With contributions by leading international experts, this book presents a detailed compilation of a new and very active field. It is the first book devoted to the covalent coupling of molecular precursors on surfaces that allows the preparation of 0D, 1D and 2D molecules that cannot be synthesized in solution. This book is aimed at students and researchers interested in nanochemistry and molecular devices and it gives the reader a pedagogical up-to-date vision of the most recent developments. The editor ensures a multidisciplinary approach involving molecular chemistry, surface sciences, surface spectroscopies, theory, scanning tunneling and non-contact atomic force microscopies.
The third volume in a series of handbooks on graphene research and applications Graphene is a valuable nanomaterial used in technology. This handbook is focused on Graphene-Like 2D Materials. The Handbook of Graphene, Volume 3 covers topics that include planar graphene superlattices; magnetic and optical properties of graphene materials with porous defects; and nanoelectronic application of graphyne and its structural derivatives.
How fast and powerful can computers become? Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings? The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing. There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology.
The book covers different aspects of the chemistry and physics of molecular materials, including organic synthesis of specific organic donors and ligands, organic metals and superconductors, molecule-based magnets, multiproperty materials and organic-inorganic hybrids. The 17 chapters are written by some of the most authoritative authors in their field. The two last chapters are devoted to molecular electronics and devices, in particular the achievements and potential for applications. An excellent work for all students and researchers in organic conductors, superconductors and molecule based magnets.
Winner of 2018 PROSE Award for MULTIVOLUME REFERENCE/SCIENCE This encyclopedia offers a comprehensive and easy reference to physical organic chemistry (POC) methodology and techniques. It puts POC, a classical and fundamental discipline of chemistry, into the context of modern and dynamic fields like biochemical processes, materials science, and molecular electronics. Covers basic terms and theories into organic reactions and mechanisms, molecular designs and syntheses, tools and experimental techniques, and applications and future directions Includes coverage of green chemistry and polymerization reactions Reviews different strategies for molecular design and synthesis of functional molecules Discusses computational methods, software packages, and more than 34 kinds of spectroscopies and techniques for studying structures and mechanisms Explores applications in areas from biology to materials science The Encyclopedia of Physical Organic Chemistry has won the 2018 PROSE Award for MULTIVOLUME REFERENCE/SCIENCE. The PROSE Awards recognize the best books, journals and digital content produced by professional and scholarly publishers. Submissions are reviewed by a panel of 18 judges that includes editors, academics, publishers and research librarians who evaluate each work for its contribution to professional and scholarly publishing. You can find out more at: proseawards.com Also available as an online edition for your library, for more details visit Wiley Online Library