Download Free The Supramolecular Chemistry Of Organic Inorganic Hybrid Materials Book in PDF and EPUB Free Download. You can read online The Supramolecular Chemistry Of Organic Inorganic Hybrid Materials and write the review.

The combination of supramolecular chemistry, inorganic solids, and nanotechnology has already led to significant advances in many areas such as sensing, controlled motion, and delivery. By making possible an unprecedented tunability of the properties of nanomaterials, these techniques open up whole new areas of application for future supramolecular concepts. The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials gathers current knowledge on the subject and provides an overview of the present state and upcoming challenges in this rapidly growing, highly cross- or interdisciplinary research field. The book details how these designed materials can improve existing materials or generate novel functional features such as chemical amplification, cooperative binding and signal enhancement that are difficult or not at all achievable by classical organic supramolecular chemistry. It also discusses issues related to nanofabrication or nanotechnology such as the directed and controlled assembly or disassembly, biomimetic functions and strategies, and the gating and switching of surface functions or morphology.
The combination of supramolecular chemistry, inorganic solids, and nanotechnology has already led to significant advances in many areas such as sensing, controlled motion, and delivery. By making possible an unprecedented tunability of the properties of nanomaterials, these techniques open up whole new areas of application for future supramolecular concepts. The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials gathers current knowledge on the subject and provides an overview of the present state and upcoming challenges in this rapidly growing, highly cross- or interdisciplinary research field. The book details how these designed materials can improve existing materials or generate novel functional features such as chemical amplification, cooperative binding and signal enhancement that are difficult or not at all achievable by classical organic supramolecular chemistry. It also discusses issues related to nanofabrication or nanotechnology such as the directed and controlled assembly or disassembly, biomimetic functions and strategies, and the gating and switching of surface functions or morphology.
Supramolecular chemistry, "the chemistry beyond the molecule", is a fascinating realm of modern science. The design of novel supramolecular structures, surfaces, and techniques are at the forefront of research in different application areas, including corrosion and biofouling protection. A team of international experts provide a comprehensive view of the applications and potential of supramolecular chemistry in corrosion and biofouling prevention. Chapter topics include types and fundamentals of supramolecules, supramolecular polymers and gels, host-guest inclusion compounds, organic-inorganic hybrid materials, metallo-assemblies, cyclodextrins, crown ethers, mesoporous silica and supramolecular structures of graphene and other advances. Additional Features include: Focuses on different aspects of supramolecular chemistry in corrosion and biofouling prevention. Comprehensively covers supramolecular interactions that can provide better corrosion and biofouling protection. Provides the latest developments in self-healing coatings. Explores recent research advancements in the suggested area. Includes case studies specific to industries. The different supramolecular approaches being investigated to control corrosion and biofouling are gathered in one well-organized reference to serve senior undergraduate and graduate students, research students, engineers, and researchers in the fields of corrosion science & engineering, biofouling, and protective coatings.
Metal–organic frameworks (MOFs) are crystalline porous materials constructed from metal ions/clusters and organic linkers, combining the merits of both organic and inorganic components. Due to high porosity, rich functionalities, well-defined open channels and diverse structures, MOFs show great potentials in field such as gas storage and separation, catalysis, and sensing. Combining them with polymers tunes their chemical, mechanical, electrical and optical properties, and endows MOFs with processability. Covalent organic frameworks (COFs) are crystalline porous materials built from organic molecular units with diverse structures and applications. Hybrid materials with intriguing properties can be achieved by appropriate preparation methods and careful selection of MOFs/COFs and polymers, broadening their potential applications. This book documents the latest research progress in MOF/COF-polymer hybrid materials and reviews and summarises hybridization strategies to achieve MOF/COF polymeric composites. It also introduces various applications and potential applicable scenarios of hybrid MOF/COF polymers. Hybrid Metal–Organic Framework and Covalent Organic Framework Polymers offers an overview to readers who are new to this field, and will appeal to graduate students and researchers working on porous materials, polymers, hybrid materials, and supramolecular chemistry.
A comprehensive and interdisciplinary resource filled with strategic insights, tools, and techniques for the design and construction of hybrid materials. Hybrid materials represent the best of material properties being combined for the development for materials with properties otherwise unavailable for application requirements. Novel Nanoscale Hybrid Materials is a comprehensive resource that contains contributions from a wide range of noted scientists from various fields, working on the hybridization of nanomolecules in order to generate new materials with superior properties. The book focuses on the new directions and developments in design and application of new materials, incorporating organic/inorganic polymers, biopolymers, and nanoarchitecture approaches. This book delves deeply into the complexities that arise when characteristics of a molecule change on the nanoscale, overriding the properties of the individual nanomolecules and generating new properties and capabilities altogether. The main topics cover hybrids of carbon nanotubes and metal nanoparticles, semiconductor polymer/biopolymer hybrids, metal biopolymer hybrids, bioorganic/inorganic hybrids, and much more. This important resource: Addresses a cutting-edge field within nanomaterials by presenting groundbreaking topics that address hybrid nanostructures Includes contributions from an interdisciplinary group of chemists, physicists, materials scientists, chemical and biomedical engineers Contains applications in a wide-range of fields—including biomedicine, energy, catalysis, green chemistry, graphene chemistry, and environmental science Offers expert commentaries that explore potential future avenues of future research trends Novel Nanoscale Hybrid Materials is an important resource for chemists, physicists, materials, chemical and biomedical engineers that offers the most recent developments and techniques in hybrid nanostructures.
Polymer Hybrid Materials and Composites: Fundamentals and Applications presents an introduction to the principles behind polymeric hybrid materials, providing both theoretical and practical information on the synthesis and application of these materials. It documents the latest innovations, ranging from materials development and characterization of properties, to applications. Sections cover the route from laboratory to industry, providing practical, actionable guidance to assist the scaling up process for applications in areas including energy technology, solar cells, water purification, medical devices, optical and electrical devices, and more. It is an essential introduction to the emerging technologies that are made possible by these advanced materials. - Documents the latest innovations in the technology, thus enabling new applications - Provides significant and detailed information on the engineering of hybrid materials for a wide range of areas, including energy, medical, and electronics, among others
Das erste Handbuch und gut zugängliche Referenzwerk zu diesem zunehmend wichtigen Thema erläutert in einem anwendungsorientierten Ansatz Synthese, Design, Charakterisierung und Simulation von Grenzflächen bei hybriden organisch-anorganischen Materialien.
This ready reference is the first to collate the interdisciplinary knowledge from materials science, bioengineering and nanotechnology to give an in-depth overview of the topic. As such, it provides broad coverage of combinations between inorganic materials and such key biological structures as proteins, enzymes, DNA, or biopolymers. With its treatment of various application directions, including bioelectronic interfacing, tissue repair, porous membranes, sensors, nanocontainers, and DNA engineering, this is essential reading for materials engineers, medical researchers, catalytic chemists, biologists, and those working in the biotechnological and semiconductor industries.
Applications of Supramolecular Chemistry introduces the use of non-covalent interactions and molecular recognition for many fields. Applications include the analysis of technically, medically, and environmentally important chemical compounds, their separation, purification and removal, and the design of new materials, including supramolecular electronics. The book also explores biological interactions and applications in the food and textile industries.
Hybrid Polymer Composite Materials: Volume 1: Structure and Chemistry presents the latest on these composite materials that can best be described as materials that are comprised of synthetic polymers and biological/inorganic/organic derived constituents. The combination of unique properties that emerge as a consequence of the particular arrangement and interactions between the different constituents provides immense opportunities for advanced material technologies. This series of four volumes brings an interdisciplinary effort to accomplish a more detailed understanding of the interplay between synthesis, structure, characterization, processing, applications, and performance of these advanced materials, with this volume focusing on their structure and chemistry. - Provides a clear understanding of the present state-of-the-art and the growing utility of hybrid polymer composite materials - Includes contributions from world renowned experts and discusses the combination of different kinds of materials procured from diverse resources - Discusses their synthesis, chemistry, processing, fundamental properties, and applications - Provides insights on the potential of hybrid polymer composite materials for advanced applications