Download Free The Strength Of Concrete Beams Book in PDF and EPUB Free Download. You can read online The Strength Of Concrete Beams and write the review.

This book is focused on the theoretical and practical design of reinforced concrete beams, columns and frame structures. It is based on an analytical approach of designing normal reinforced concrete structural elements that are compatible with most international design rules, including for instance the European design rules – Eurocode 2 – for reinforced concrete structures. The book tries to distinguish between what belongs to the structural design philosophy of such structural elements (related to strength of materials arguments) and what belongs to the design rule aspects associated with specific characteristic data (for the material or loading parameters). A previous book, entitled Reinforced Concrete Beams, Columns and Frames – Mechanics and Design, deals with the fundamental aspects of the mechanics and design of reinforced concrete in general, both related to the Serviceability Limit State (SLS) and the Ultimate Limit State (ULS), whereas the current book deals with more advanced ULS aspects, along with instability and second-order analysis aspects. Some recent research results including the use of non-local mechanics are also presented. This book is aimed at Masters-level students, engineers, researchers and teachers in the field of reinforced concrete design. Most of the books in this area are very practical or code-oriented, whereas this book is more theoretically based, using rigorous mathematics and mechanics tools. Contents 1. Advanced Design at Ultimate Limit State (ULS). 2. Slender Compression Members – Mechanics and Design. 3. Approximate Analysis Methods. Appendix 1. Cardano’s Method. Appendix 2. Steel Reinforcement Table. About the Authors Jostein Hellesland has been Professor of Structural Mechanics at the University of Oslo, Norway since January 1988. His contribution to the field of stability has been recognized and magnified by many high-quality papers in famous international journals such as Engineering Structures, Thin-Walled Structures, Journal of Constructional Steel Research and Journal of Structural Engineering. Noël Challamel is Professor in Civil Engineering at UBS, University of South Brittany in France and chairman of the EMI-ASCE Stability committee. His contributions mainly concern the dynamics, stability and inelastic behavior of structural components, with special emphasis on Continuum Damage Mechanics (more than 70 publications in International peer-reviewed journals). Charles Casandjian was formerly Associate Professor at INSA (French National Institute of Applied Sciences), Rennes, France and the chairman of the course on reinforced concrete design. He has published work on the mechanics of concrete and is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX. Christophe Lanos is Professor in Civil Engineering at the University of Rennes 1 in France. He has mainly published work on the mechanics of concrete, as well as other related subjects. He is also involved in creating a web experience for teaching reinforced concrete design – BA-CORTEX.
This book compiles state-of-the-art information on the behavior, analysis, and design of concrete beams containing transverse openings. Discussions include the need, effects, and classification of openings as well as the general requirements for fulfilling design pure bending, combined bending, and shear - illustrated with numerical examples torsion alone or in combination with bending and shear large rectangular openings as well as opening size and location on beam behavior methods for analyzing ultimate strength and serviceability requirements effects of torsion in beams large openings in continuous beams and their effects on possible redistribution of internal forces as well as guidelines and procedures for the design of such beams effect of prestressing on the serviceability and strength of beams with web openings design against cracking at openings and ultimate loads Concrete Beams with Openings serves as an invaluable source of information for designers and practicing engineers, especially useful since little or no provision or guidelines are currently available in most building codes.
Methods for analytically predicting the behavior of simply supported reinforced concrete beams subjected to fire are presented. This is generally a two-step process involving a thermal analysis followed by a stress analysis. This study emphasizes the latter, wherein the determination of moment-curvature-time relationships for the beam cross section incorporates the temperature-dependent strength degradation in the steel and concrete as well as thermal and creep strains. The sensitivity of the predictions to various phases of analytical modeling is investigated to establish the parameters most important for the prediction of beam behavior and to indicate where additional data should be gathered. A comparison of predicted behavior with that observed in fire tests shows excellent agreement when realistic reinforcement temperature histories are used.
Advances in Civil Engineering and Building Materials presents the state-of-the-art development in: - Structural Engineering - Road & Bridge Engineering- Geotechnical Engineering- Architecture & Urban Planning- Transportation Engineering- Hydraulic Engineering - Engineering Management- Computational Mechanics- Construction Technology- Buildi