Download Free The Statistical Mechanics Of Lattice Gases Book in PDF and EPUB Free Download. You can read online The Statistical Mechanics Of Lattice Gases and write the review.

A state-of-the-art survey of both classical and quantum lattice gas models, this two-volume work will cover the rigorous mathematical studies of such models as the Ising and Heisenberg, an area in which scientists have made enormous strides during the past twenty-five years. This first volume addresses, among many topics, the mathematical background on convexity and Choquet theory, and presents an exhaustive study of the pressure including the Onsager solution of the two-dimensional Ising model, a study of the general theory of states in classical and quantum spin systems, and a study of high and low temperature expansions. The second volume will deal with the Peierls construction, infrared bounds, Lee-Yang theorems, and correlation inequality. This comprehensive work will be a useful reference not only to scientists working in mathematical statistical mechanics but also to those in related disciplines such as probability theory, chemical physics, and quantum field theory. It can also serve as a textbook for advanced graduate students. Originally published in 1993. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.
In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses a version of a theorem by Bishop and Phelps to obtain existence results for phase transitions. Furthermore, he shows how the Gibbs Phase Rule and the existence of a wide variety of phase transitions follow from the general framework and the theory of convex functions. While the behavior of some of these phase transitions is very "pathological," others exhibit more "reasonable" behavior. As an example, the author considers the isotropic Heisenberg model. Formulating a version of the Gibbs Phase Rule using Hausdorff dimension, he shows that the finite dimensional subspaces satisfying this phase rule are generic. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Statistical Mechanics discusses the fundamental concepts involved in understanding the physical properties of matter in bulk on the basis of the dynamical behavior of its microscopic constituents. The book emphasizes the equilibrium states of physical systems. The text first details the statistical basis of thermodynamics, and then proceeds to discussing the elements of ensemble theory. The next two chapters cover the canonical and grand canonical ensemble. Chapter 5 deals with the formulation of quantum statistics, while Chapter 6 talks about the theory of simple gases. Chapters 7 and 8 examine the ideal Bose and Fermi systems. In the next three chapters, the book covers the statistical mechanics of interacting systems, which includes the method of cluster expansions, pseudopotentials, and quantized fields. Chapter 12 discusses the theory of phase transitions, while Chapter 13 discusses fluctuations. The book will be of great use to researchers and practitioners from wide array of disciplines, such as physics, chemistry, and engineering.
A self-contained, comprehensive introduction to the theory of hydrodynamic lattice gases.
Statistical Mechanics: Fundamentals and Model Solutions, Second Edition Fully updated throughout and with new chapters on the Mayer expansion for classical gases and on cluster expansion for lattice models, this new edition of Statistical Mechanics: Fundamentals and Model Solutions provides a comprehensive introduction to equilibrium statistical mechanics for advanced undergraduate and graduate students of mathematics and physics. The author presents a fresh approach to the subject, setting out the basic assumptions clearly and emphasizing the importance of the thermodynamic limit and the role of convexity. With problems and solutions, the book clearly explains the role of models for physical systems, and discusses and solves various models. An understanding of these models is of increasing importance as they have proved to have applications in many areas of mathematics and physics. Features Updated throughout with new content from the field An established and well-loved textbook Contains new problems and solutions for further learning opportunity Author Professor Teunis C. Dorlas is at the Dublin Institute for Advanced Studies, Ireland.
This two-volume work provides a comprehensive study of the statistical mechanics of lattice models. It introduces readers to the main topics and the theory of phase transitions, building on a firm mathematical and physical basis. Volume 1 contains an account of mean-field and cluster variation methods successfully used in many applications in solid-state physics and theoretical chemistry, as well as an account of exact results for the Ising and six-vertex models and those derivable by transformation methods.
Far-from-equilibrium phenomena, while abundant in nature, are not nearly as well understood as their equilibrium counterparts. On the theoretical side, progress is slowed by the lack of a simple framework, such as the Boltzmann-Gbbs paradigm in the case of equilibrium thermodynamics. On the experimental side, the enormous structural complexity of real systems poses serious obstacles to comprehension.Similar difficulties have been overcome in equilibrium statistical mechanics by focusing on model systems. Even if they seem too simplistic for known physical systems, models give us considerable insight, provided they capture the essential physics. They serve as important theoretical testing grounds where the relationship between the generic physical behavior and the key ingredients of a successful theory can be identified and understood in detail.Within the vast realm of non-equilibrium physics, driven diffusive systems form a subset with particularly interesting properties. As a prototype model for these systems, the driven lattice gas was introduced roughly a decade ago. Since then, a number of surprising phenomena have been discovered including singular correlations at generic temperatures, as well as novel phase transitions, universality classes, and interfacial instabilities. This book summarizes current knowledge on driven systems, from apedagogical discussion of the original driven lattice gas to a brief survey of related models. Given that the topic is far from closed, much emphasis is placed on detailing open questions and unsolved problems as an incentive for the reader to pursue thesubject further.Provides a summary of current knowledge on driven diffusive systemsEmphasis is placed on detailing open questions and unsolved problemsCovers the entire subject from original driven lattice gas to a survey of related models
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.