Download Free The Sponges Book in PDF and EPUB Free Download. You can read online The Sponges and write the review.

Time to squeeze a skeleton! It's bath time, and your sponge is actually the skeleton of an animal that lived under the sea. Read on to find out how sponges use their special holes and tunnels to eat and breathe, and how you use these same holes and tunnels to soak up the water and rinse off the soap.Sploosh! Splash! Dribble! Did you know your bath sponge once lived in the sea? Sponges come in all shapes, colors, and sizes. Barbara Juster Esbensen and Holly Keller have paired an engaging text with funny, kid-friendly illustrations to reveal that a sponge is not just a bath toy. Sploosh! Splash! Dribble! Did you know your bath sponge once lived in the sea? Sponges come in all shapes, colors, and sizes. Barbara Juster Esbensen and Holly Keller have paired an engaging text with funny, kid-friendly illustrations to reveal that a sponge is not just a bath toy.
Research whilst compiling this book has uncovered a fauna about twice the size as that previously published in the literature and consequently Systema Porifera revises and stabilizes the systematics of the phylum to accommodate this new knowledge in a contemporary framework. Practical tools (key illustrations, descriptions of character) are provided to facilitate the assignment of approximately 680 extant and 100 fossil genera. Systema Porifera is unique making sponge taxonomy widely available at the practical level of classification (genera, families, order). It is a taxonomic revision of sponges and spongiomorphis (such as sphinctozoans and archaeocyathans) based on re-evaluation of type materials and evidence. It is also a practical guide to sponge identification providing descriptions and illustrations of characters and interpretation of their importance to systematics. Systema Porifera addresses many long standing nomenclatural problems and provides a sound baseline for future debate on sponges and their place in time and space. Systema Porifera describes 3 classes, 7 subclasses, 24 orders, 127 families and 682 valid genera of extant sponges (with over 1600 nominal generic names and an additional 500 invalid names treated). Treatment of the fossil fauna is less comprehensive or critical, although 6 classes, 30 orders, 245 families and 998 fossil genera are mentioned. Keys to all recent and many fossil taxa are provided.
Modem biology owes much to the study of favorable model systems which fa cilitates the realization of critical experiments and results in the introduction of new concepts. Examples of such systems are numerous and studies of them are regularly recognized by the scientific community. The 1983 Nobel Prize in Med icine and Physiology is a magnificent example in which com plants served as the experimental model. In a manner somewhat more modest, other biological systems have attracted recognition due to their critical phylogenetic position, or indeed because of their uniqueness which distinguishes them from all other organisms. Assuredly, among the whole assemblage ofliving organisms, sponges stand out as worthy of interest by scientists: they are simultaneously models, an important group in evolution, and animals unlike others. As early as the beginning of this century, sponges appeared as exceptional models for the study of phenomena of cell recognition. Innumerable works have been dedicated to understanding the mechanisms which assure the reaggregation of dissociated cells and the reconstitution of a functional individual. Today, re search on these phenomena is at the ultimate, molecular level. Through an as semblage of characteristics the sponges are, based upon all available evidence, the most primitive Metazoans. Their tissues-perhaps one can say their cell groups-are loosely assembled (they possess no tight or gap junctions), cell dif ferentiation appears highly labile, and they do not develop any true organs. But, they are most certainly Metazoans.
Sponges (phylum Porifera) are known to be very rich sources for bioactive compounds, mainly secondary metabolites. Main efforts are devoted to cell- and mariculture of sponges to assure a sustainable exploitation of bioactive compounds from biological starting material. These activities are flanked by improved technologies to cultivate bacteria and fungi which are associated with the sponges. It is the hope that by elucidating the strategies of interaction between microorganisms and their host (sponge), by modern cell and molecular biological methods, a more comprehensive cultivation of the symbiotic organisms will be possible. The next step in the transfer of knowledge to biotechnological applications is the isolation, characterization and structural determination of the bioactive compounds by sophisticated chemical approaches.
Introduces the physical characteristics and habitats of invertebrates that live in the ocean, including jellyfish, sponges, and anemones.