Download Free The Special Theory Of Relativity Book in PDF and EPUB Free Download. You can read online The Special Theory Of Relativity and write the review.

This book offers a comprehensive, university-level introduction to Einstein’s Special Theory of Relativity. In addition to the purely theoretical aspect, emphasis is also given to its historical development as well as to the experiments that preceded the theory and those performed in order to test its validity.The main body of the book consists of chapters on Relativistic Kinematics and Dynamics and their applications, Optics and Electromagnetism. These could be covered in a one-semester course. A more advanced course might include the subjects examined in the other chapters of the book and its appendices.As a textbook, it has some unique characteristics: It provides detailed proofs of the theorems, offers abundant figures and discusses numerous examples. It also includes a number of problems for readers to solve, the complete solutions of which are given at the end of the book.It is primarily intended for use by university students of physics, mathematics and engineering. However, as the mathematics needed is of an upper-intermediate level, the book will also appeal to a more general readership.
This book concentrates on presenting the theory of special relativity as the geometry of space-time. The presentation is straightforward, complete and reader-friendly, with explanatory asides, that give historical context and links with other branches of physics and mathematics. The first four chapters give a complete description of the special theory and the nature of space and time, with the minimum use of mathematics. The mathematics necessary is introduced in the following five chapters, with the final fifteen chapters devoted to a comprehensive and detailed exposition of Einstein’s special relativity. Features: * Concentrates on presenting the theory of special relativity as the geometry of space-time * The presentation is straightforward, complete and reader-friendly, with explanatory asides, which give historical context and links with other branches of physics and mathematics
An analysis of one of the three great papers Einstein published in 1905, each of which was to alter forever the field it dealt with. The second of these papers, "On the Electrodynamics of Moving Bodies", established what Einstein sometimes referred to as the "so-called Theory of Relativity". Miller uses the paper to provide a window on the intense intellectual struggles of physicists in the first decade of the 20th century: the interplay between physical theory and empirical data; the fiercely held notions that could not be articulated clearly or verified experimentally; the great intellectual investment in existing theories, data, and interpretations - and associated intellectual inertia - and the drive to the long-sought-for unification of the sciences. Since its original publication, this book has become a standard reference and sourcebook for the history and philosophy of science; however, it can equally well serve as a text on twentieth-century philosophy.
This tribute to Einstein's genius opens with a brief essay by Hanoch Gutfreund, a chronology of Einstein's life, a selection of quotes by Einstein, and, to introduce the manuscript, a detailed description of the manuscript, its contents, publication history, and provenance.
The book presents the theory of relativity as a unified whole. By showing that the concepts of this theory are interrelated to form a unified totality David Bohm supplements some of the more specialist courses which have tended to give students a fragmentary impression of the logical and conceptual nature of physics as a whole.
Einstein's Special Theory of Relativity, first published in 1905, radically changed our understanding of the world. Familiar notions of space and time and energy were turned on their head, and our struggle with Einstein's counterintuitive explanation of these concepts was under way. The task is no easier today than it was a hundred years ago, but in this book Sander Bais has found an original and uniquely effective way to convey the fundamental ideas of Einstein's Special Theory. Bais's previous book, The Equations, was widely read and roundly praised for its clear and commonsense explanation of the math in physics. Very Special Relativity brings the same accessible approach to Einstein's theory. Using a series of easy-to-follow diagrams and employing only elementary high school geometry, Bais conducts readers through the quirks and quandaries of such fundamental concepts as simultaneity, causality, and time dilation. The diagrams also illustrate the difference between the Newtonian view, in which time was universal, and the Einsteinian, in which the speed of light is universal. Following Bais's straightforward sequence of simple, commonsense arguments, readers can tinker with the theory and its great paradoxes and, finally, arrive at a truly deep understanding of Einstein's interpretation of space and time. An intellectual journey into the heart of the Special Theory, the book offers an intimate look at the terms and ideas that define our reality.
Based on courses taught at the University of Dublin, Carnegie Mellon University, and mostly at Simon Fraser University, this book presents the special theory of relativity from a mathematical point of view. It begins with the axioms of the Minkowski vector space and the flat spacetime manifold. Then it discusses the kinematics of special relativity in terms of Lorentz tranformations, and treats the group structure of Lorentz transformations. Extending the discussion to spinors, the author shows how a unimodular mapping of spinor (vector) space can induce a proper, orthochronous Lorentz mapping on the Minkowski vector space. The second part begins with a discussion of relativistic particle mechanics from both the Lagrangian and Hamiltonian points of view. The book then turns to the relativistic (classical) field theory, including a proof of Noether's theorem and discussions of the Klein-Gordon, electromagnetic, Dirac, and non-abelian gauge fields. The final chapter deals with recent work on classical fields in an eight-dimensional covariant phase space.
The Special Theory of Relativity (STR) is the physical theory of measurement in inertial frames of reference proposed by Albert Einstein. It is deemed special because the theory or principle of relativity is applied only to inertial frames. In this books, Prof Ghatak sets out and explains the basic physics behind Einstein's theory, and at the same time he gives the reader a concise, enthusiastic overview of Einstein's massive contribution to science and the knowledge of mankind. In 1999, Time Magazine names Albert Einstein as "The Person of the Century." This book tells us why. The introduction deals with a summary of Einstein's work, Chapter One discusses Tiem Dilation and Length Contraction, Chapter Two deals with Mass-energy Relationship and Lorentz Tansformations, and Chapters Three and Four reproduce two of his original ground breaking papers from 1905. "Special Theory of Relativity" can be read by physics and engineering undergraduates as a support text on their courses, but it is of equal interest to readers of general science and fans of Albert Einstein.
This book pieces together the jigsaw puzzle of Einstein’s journey to discovering the special theory of relativity. Between 1902 and 1905, Einstein sat in the Patent Office and may have made calculations on old pieces of paper that were once patent drafts. One can imagine Einstein trying to hide from his boss, writing notes on small sheets of paper, and, according to reports, seeing to it that the small sheets of paper on which he was writing would vanish into his desk-drawer as soon as he heard footsteps approaching his door. He probably discarded many pieces of papers and calculations and flung them in the waste paper basket in the Patent Office. The end result was that Einstein published nothing regarding the special theory of relativity prior to 1905. For many years before 1905, he had been intensely concerned with the topic; in fact, he was busily working on the problem for seven or eight years prior to 1905. Unfortunately, there are no surviving notebooks and manuscripts, no notes and papers or other primary sources from this critical period to provide any information about the crucial steps that led Einstein to his great discovery. In May 1905, Henri Poincaré sent three letters to Hendrik Lorentz at the same time that Einstein wrote his famous May 1905 letter to Conrad Habicht, promising him four works, of which the fourth one, Relativity, was a rough draft at that point. In the May 1905 letters to Lorentz, Poincaré presented the basic equations of his 1905 “Dynamics of the Electron”, meaning that, at this point, Poincaré and Einstein both had drafts of papers relating to the principle of relativity. The book discusses Einstein’s and Poincaré’s creativity and the process by which their ideas developed. The book also explores the misunderstandings and paradoxes apparent in the theory of relativity, and unravels the subtleties and creativity of Einstein.
This textbook expounds the major topics in the special theory of relativity. It provides a detailed examination of the mathematical foundation of the special theory of relativity, relativistic mass, relativistic mechanics, and relativistic electrodynamics. As well as covariant formulation of relativistic mechanics and electrodynamics, the text discusses the relativistic effect on photons. A new chapter on electromagnetic waves as well as several new problems and examples have been included in the second edition of the book. Using the mathematical approach, the text offers graduate students a clear, concise view of the special theory of relativity. Organized into 15 chapters and two appendices, the content is presented in a logical order, and every topic has been dealt with in a simple and lucid manner. To aid understanding of the subject, the text provides numerous relevant worked-out examples in every chapter. The mathematical approach of the text helps students in their independent study and motivates them to research the topic further.