Download Free The Shear Strength Of Reinforced Concrete Beam Column Joints Book in PDF and EPUB Free Download. You can read online The Shear Strength Of Reinforced Concrete Beam Column Joints and write the review.

This book compiles state-of-the-art information on the behavior, analysis, and design of concrete beams containing transverse openings. Discussions include the need, effects, and classification of openings as well as the general requirements for fulfilling design pure bending, combined bending, and shear - illustrated with numerical examples torsion alone or in combination with bending and shear large rectangular openings as well as opening size and location on beam behavior methods for analyzing ultimate strength and serviceability requirements effects of torsion in beams large openings in continuous beams and their effects on possible redistribution of internal forces as well as guidelines and procedures for the design of such beams effect of prestressing on the serviceability and strength of beams with web openings design against cracking at openings and ultimate loads Concrete Beams with Openings serves as an invaluable source of information for designers and practicing engineers, especially useful since little or no provision or guidelines are currently available in most building codes.
This book presents articles from The 16th East Asian-Pacific Conference on Structural Engineering and Construction, 2019, held in Brisbane, Australia. It provides a forum for professional engineers, academics, researchers and contractors to present recent research and developments in structural engineering and construction.​
Publisher Description
This book presents a method which simplifies and unifies the design of reinforced concrete (RC) structures and is applicable to any structural element under both normal and seismic loading conditions. The proposed method has a sound theoretical basis and is expressed in a unified form applicable to all structural members, as well as their connections. It is applied in practice through the use of simple failure criteria derived from first principles without the need for calibration through the use of experimental data. The method is capable of predicting not only load-carrying capacity but also the locations and modes of failure, as well as safeguarding the structural performance code requirements. In this book, the concepts underlying the method are first presented for the case of simply supported RC beams. The application of the method is progressively extended so as to cover all common structural elements. For each structural element considered, evidence of the validity of the proposed method is presented together with design examples and comparisons with current code specifications. The method has been found to produce design solutions which satisfy the seismic performance requirements of current codes in all cases investigated to date, including structural members such as beams, columns, and walls, beam-to-beam or column-to-column connections, and beam-to-column joints.
Based on the 1995 edition of the American Concrete Institute Building Code, this text explains the theory and practice of reinforced concrete design in a systematic and clear fashion, with an abundance of step-by-step worked examples, illustrations, and photographs. The focus is on preparing students to make the many judgment decisions required in reinforced concrete design, and reflects the author's experience as both a teacher of reinforced concrete design and as a member of various code committees. This edition provides new, revised and expanded coverage of the following topics: core testing and durability; shrinkage and creep; bases the maximum steel ratio and the value of the factor on Appendix B of ACI318-95; composite concrete beams; strut-and-tie models; dapped ends and T-beam flanges. It also expands the discussion of STMs and adds new examples in SI units.