Download Free The Roundoff Book in PDF and EPUB Free Download. You can read online The Roundoff and write the review.

This book presents an exhaustive and in-depth exposition of the various numerical methods used in scientific and engineering computations. It emphasises the practical aspects of numerical computation and discusses various techniques in sufficient detail to enable their implementation in solving a wide range of problems. The main addition in the third edition is a new Chapter on Statistical Inferences. There is also some addition and editing in the next chapter on Approximations. With this addition 12 new programs have also been added.
A best-seller in its print version, this comprehensive CD-ROM reference contains unique, fully searchable coverage of all major topics in digital signal processing (DSP), establishing an invaluable, time-saving resource for the engineering community. Its unique and broad scope includes contributions from all DSP specialties, including: telecommunications, computer engineering, acoustics, seismic data analysis, DSP software and hardware, image and video processing, remote sensing, multimedia applications, medical technology, radar and sonar applications
The most comprehensive and up-to-date discussion available of the Lanczos and CG methods for computing eigenvalues and solving linear systems.
Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.
This book is all about finite wordlength errors in digital filters, con trollers and estimators, and how to minimize the deleterious effects of these errors on the performance of these devices. This does by no means imply that all about finite wordlength errors in filters, controllers and estimators is to be found in this book. We first ventured into the world of finite wordlength effects in 1987 when Gang Li began his PhD thesis in this area. Our more experienced readers might well say 'This shows', but we believe that the extent of our new contributions largely offsets our relative inexperience about the subject that might surface here and there in the book. Our naive view on the subject of finite wordlength errors in 1987 could probably be summarized as follows: • numerical errors due to finite wordlength encoding and roundoff are something that one has to live with, and there is probably not much that can be done about them except to increase the wordlength by improvements on the hardware; • these errors are as old as finite arithmetic and numerical analysis and they must therefore be well understood by now; • thus, if something can be done to minimize their effects, it must have been analysed and put into practice a long time ago. It is almost fair to say that we were wrong on all counts.
A study of the art and science of solving elliptic problems numerically, with an emphasis on problems that have important scientific and engineering applications, and that are solvable at moderate cost on computing machines.