Download Free The Role Of The Radial Electric Field In Confinement And Transport In H Mode And Vh Mode Discharges In The Diii D Tokamak Book in PDF and EPUB Free Download. You can read online The Role Of The Radial Electric Field In Confinement And Transport In H Mode And Vh Mode Discharges In The Diii D Tokamak and write the review.

Measurements of the radial electric field, E{sub r}, with high spatial and high time resolution in H-mode and VH-mode discharges in the DIII-D tokamak have revealed the significant influence of the shear in E{sub r} on confinement and transport in these discharges. These measurements are made using the DIII-D Charge Exchange Recombination (CER) System. At the L-H transition in DIII-D plasmas, a negative well-like E{sub r} profile develops just within the magnetic separatrix. A region of shear in E{sub r} results, which extends 1 to 2 cm into the plasma from the separatrix. At the transition, this region of sheared E{sub r} exhibits the greatest increase in impurity ion poloidal rotation velocity and the greatest reduction in plasma fluctuations. A transport barrier is formed in this same region of E x B velocity shear as is signified by large increases in the observed gradients of the ion temperature, the carbon density, the electron temperature and electron density. The development of the region of sheared E{sub r}, the increase in impurity ion poloidal rotation, the reduction in plasma turbulence, and the transport barrier all occur simultaneously at the L-H transition. Measurements of the radial electric field, plasma turbulence, thermal transport, and energy confinement have been performed for a wide range of plasma conditions and configurations. The results support the supposition that the progression of improving confinement at the L-H transition, into the H-mode and then into the VH-mode can be explained by the hypothesis of the suppression of plasma turbulence by the increasing penetration of the region of sheared E x B velocity into the plasma interior.
A regime of very high confinement (VH-mode) has been observed in neutral beam-heated deuterium discharges in the DIII-D tokamak with thermal energy confinement times up to [approx]3.6 times that predicted by the ITER-89P L-mode scaling and 2 times that predicted by ELM-free H-mode thermal confinement scalings. This high confinement has led to increased plasma performance, n[sub D] (0)T[sub i](0)[tau][sub E] = 2 [times] 10[sup 20] m[sup [minus]3] keV sec with I[sub p] = 1.6 MA, B[sub T] = 2.1 T, Z[sub eff] [le] 2. Detailed transport analysis shows a correspondence between the large decrease in thermal diffusivity in the region 0.75 [le] [rho] [le] 0.9 and the development of a strong shear in the radial electric field in the same region. This suggests that stabilization of turbulence by sheared E [times] B flow is responsible for the improved confinement in VH-mode. A substantial fraction of the edge plasma entering the second regime of stability may also contribute to the increase in confinement. The duration of the VH-mode phase has been lengthened by feedback controlling the input power to limit plasma beta.
Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, followed by discussions on tokamaks, reversed field pinch (RFP), stellarators, and mirrors. The text then explores ideal magnetohydrodynamic (MHD) instabilities, resistive instabilities, neoclassical tearing mode, resistive wall mode, the Boltzmann equation, the Vlasov equation, and Landau damping. After covering dielectric tensors of cold and hot plasmas, the author discusses the physical mechanisms of wave heating and noninductive current drive. The book concludes with an examination of the challenging issues of plasma transport by turbulence, such as magnetic fluctuation and zonal flow. Controlled Fusion and Plasma Physics clearly and thoroughly promotes intuitive understanding of the developments of the principal fusion programs and the relevant fundamental and advanced plasma physics associated with each program.
The plasma toroidal rotation and the radial electric field in the core ([rho]{approx lt}0.9) of H-mode discharges in DIII-D are greatly altered by the drag produced by application of static, resonant magnetic field perturbations from an external coil (the n = 1 coil''). Transport loss due to turbulent fluctuations can in theory be reduced by E{sub r} shear stabilization or suppression. This is tested experimentally in DIII-D by using the magnetic breaking'' of rotation (with concomitant change in E{sub r}) as an independent control. The magnetic braking produces reversal of the core radial electric field, E{sub r}, and E{sub r} shear. However, the plasma maintains a negative edge ([rho]{approx lt}0.95) E{sub r} and E{sub r} shear and remains in H-mode with insignificant changes in global confinement, density profile and temperature profiles. The H-mode confinement is remarkably robust to the increasing error fields and the slowed toroidal rotation up to the onset of a locked mode which induces a transition to L-mode, the virtual cessation of plasma rotation and large reconnected islands.